
NASA Contractor Report 4433

A Formal Model of Asynchronous

Communication and Its Use

in Mechanically Verifying

a Biphase Mark Protocol

J. Strother Moore

Computational Logic, Inc.

Austin, Texas

Prepared for

Langley Research Center

under Contract NAS1-18878

NI SA
National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

1992

Abstract

In this paper we present a formal model of asynchronous communication as a function in the Boyer-Moore

logic. The function transforms the signal stream generated by one processor into the signal stream

consumed by an independently clocked processor. This transformation "blurs" edges and "dilates" time

due to differences in the phases and rates of the two clocks and the communications delay. The model can

be used quantitatively to derive concrete performance bounds on asynchronous communications at ISO

protocol level 1 (physical level). We develop part of the reusable formal theory that permits the convenient

application of the model. We use the theory to show that a biphase mark protocol can be used to send

messages of arbitrary length between two asynchronous processors. We study two versions of the protocol,

a conventional one which uses cells of size 32 cycles and an unconventional one which uses cells of size

18. Our proof of the former protocol requires the ratio of the clock rates of the two processors to be within

3% of unity. The unconventional biphase mark protocol permits the ratio to vary by 5%. At nominal clock

rates of 20MHz, the unconventional protocol allows transmissions at a burst rate of slightly over IMHz.

These claims are formally stated in terms of our model of asynchrony; the proofs of the claims have been

mechanically checked with the Boyer-Moore theorem prover, NQTHM. We conjecture that the protocol

can be proved to work under our model for smaller cell sizes and more divergent clock rates but the proofs

would be harder. Known inadequacies of our model include that (a) distortion due to the presence of an

edge is limited to the time span of the cycle during which the edge was written, (b) both clocks are assumed

to be linear functions of time (i.e., the rate of a given clock is unwavering) and (c) reading "on an edge"

produces a nondeterministically defined value rather than an indeterminate value. We discuss these

problems.

Keywords: hardware verification, fault tolerance, protocol verification, clock synchronization, Manchester

format, FM format, automatic theorem proving, Boyer-Moore logic, ISO protocol level 1, performance

modeling, microcommunications.

PRECEDING PAGE BLANK NOT FILMED

Table of Contents

1. Introduction ... 1

2. Logical Foundations .. 5

3. The Model of Asynchrony ... 7
3.1. Pass 1 .. 9
3.2. Pass 2 .. 10
3.3. Pass 3 .. 13
3.4. Combining the Passes ... 13

4. The Biphase Mark Protocol .. 13
4.1. Sending .. 14
4.2. Receiving ... 15

5. The Theorem .. 16

6. Formal Experiments .. 18

7. Proofs ... 19
7.1. The Reusable Theory of Async ... 20

7.1-A. The Waveform Generators ... 20
7.1-B. Elementary Rules ... 20
7.1-C. Rules about Smooth ... 21
7.1-D. Rules about Det .. 23
7.1-E. Rules about Warp ... 24

7. l-E(1). The Length of Warp .. 24
7. I-E(2). Distributing Warp over Listn .. 26
7.1-E(3). Distributing Warp over App .. 26
7.1-E(4). Warping in the Vicinity of a Ramp 27

7.2. Bounding Certain Functions .. 31
7.2-A. Bounding nq ... 31
7.2-B. Bounding dw .. 31
7.2-C. Bounding n* ... 31

7.3. Scanning across a Ramp ... 32
7.4. Finding the Sampling Point ... 32
7.5. The Proof of BPM18 .. 33

8. Other Configurations of Biphase Mark 44

9. Concluding Remarks on our Model 45
10. Relation to Other Work ... 46

11. Acknowledgements .. 48

5_,.,f, v PRECEDING PAGE BLANK NOT FILMED

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:
Figure 10:
Figure lh
Figure 12:
Figure 13:

How Asynchrony Mangles Signals
One Edge Can Influence Several Read Cycles
Biphase Mark Terminology
The Three Passes in the Model

The Recursion in warp
Our Modified Biphase Mark Protocol
Sending {list t f t t)withCellsofSize 1+2
The Compositionof send, async arldrecv

AllExperiment withsend, async, arldrecv

Warping Across a Ramp
Is the Correct Bit Recovered?

Waveform if flgl is "High"
Bounds on the Lengths of Waveform Regions

3
4
5
9

11
14
15
16
19

28
36
39
40

vi

1. Introduction

In this paper we will (a) formalize the lowest-level communication between two independently clocked

digital devices, (b) formalize the statement that, under certain conditions on the clock rates of the two

processors, a biphase mark protocol permits the communication of arbitrarily long messages under our

model of asynchronony, and (c) describe a mechanically checked formal proof that the statement is a

theorem. Put less pedantically, we will exhibit a formal model of asynchronous communication and use it

to prove that a commonly used protocol works.

We have tried to make this paper accessible both to hardware engineers, who are familiar with such terms

as "asynchronous," "clock rates" and "digital phase locking," and to theorists, who are familiar with

"formalize," "theorem" and "proof." Our attempt to bridge the gap between these two communities is

largely found in the optional "boxes" scattered throughout the paper. There we try to explain possibly

unfamiliar terms without detracting from what is otherwise a direct presentation of our formal model and

the example of its use.

The biphase mark protocol--variously known as "Bi-¢-M," "FM" or "single density" and sometimes

called a "format" rather than a "protocol"--is a convention for representing both a string of bits and

clock edges in a square wave. Biphase mark is widely used in applications where data written by one

device is read by another. For example, it is an industry standard for single density magnetic floppy disk

recording. It is one of several protocols implemented by such commercially available microcontrollers as

the Intel 82530 Serial Communications Controller [17] (where it is implemented with digital phase

locking). A version of biphase mark, called "Manchester," is used in the Ethernet [28] and is

implemented with digital phase locking in the Intel 82C501AD Ethernet Serial Interface [17]. Biphase

mark is also used in some optical communications and satellite telemetry applications [30]. There is no

doubt that it works. But, as far as we have been able to determine, a rigorous analysis of its tolerance of

asynchrony has not been done. This is a grey area because it is at the boundary between continuous

physical phenonmenon (e.g., waves and interference) and discrete logical phenomenon (e.g., counting and
algorithms).

Nevertheless, despite the apparent novelty of a rigorous analysis of a fundamental protocol, this paper is

not really about the protocol. It is about a formal, logical model of asynchrony. We look at biphase mark
only to illustrate how the model can be used.

Whether the assumptions in our model are valid is an engineering problem; indeed, accurately modeling the

environment in which a device is expected to work may be the hardest problem the engineer faces. We

offer no solution to that problem. In some sense there is no solution to that problem. It is up to the

engineer to decide if a given model is accurate enough.

By expressing the model formally, one is forced to characterize precisely the requirements and

assumptions. This done, one is then free to analyze them rigorously. In fact, we use mechanical aids that

make the analysis both easier and less error prone.

In Figure 1 we illusa'ate the difficulty of interfacing two independently clocked devices (see box). The

figure shows what might happen if one device sends the signal stream "t£££t:t ''1 to an asynchronous

receiver whose clock is half-again slower and initially almost one full cycle out of phase.

ILl this paper we use t= and f to denote the Boolean values of "truth" and "falsity." These are also the values we use for "bits"

(instead of "1 and 0) and "signals" (instead of "high" and "low"). Because timing diagrams are helpful in explaining our model, we
adopt the convention that t= is pictured "high" and f is pictured "low."

Microprocessors

A microprocessor is finite-state machine. Shapes and sizes vary but it is not inappropriate to imagine a

rectangular piece of material about as large as a fingernail. On the outer edges of the rectangle are gold

pins that allow electrical connections to other devices. We partition the pins into "input" and

"output" pins (though in many devices some pins are both) with the understanding that the device is

sensitive to the voltages on the former and sets the voltages on the latter. These voltages are called

"signals." When the voltage is above a certain threshhold it is called "high" and when it is below

some other threshhold it is called "low." Intermediate voltages are discussed below. Inside the

rectangle are the memory devices, which store the state of the machine, and combinational logic, a

network of wires and Boolean logic "gates," for computing new states and output signals as a function

of the old state and input signals. A metronome-like clock (usually a quartz crystal) ticks constantly

during the operation of the machine. Typical clock rates are 20MHz, which means the clock ticks

twenty million times a second. Each time the clock ticks the machine changes state. The state change

is not instantaneous; it may take an appreciable portion of the cycle from one tick to the next for the

new state to stabilize. Exactly when during the cycle the machine "reads" and "writes" its pins is

entirely dependent upon the internal design of the machine.

An intermediate voltage on a pin may cause the device to behave contrary to this description. In

particular, it may create a "metastable" state. Such a state may may appear to oscillate between

different defined states or may spontaneously decay into a stable defined state independently of the

clock and the mathematically understood state-transition function. Hardware designers strive to avoid

the possibility that intermediate voltages appear on pins.

input pins output pins

state-holding _devices -- _ combinational

clock _ logic

Now suppose we have two such processors. They are "asynchronous" with respect to each other

because their clocks are independent. Suppose we connect an output pin of one to an input pin of the

other. On every cycle of the first processor, some signal is written to the output pin and thus, after a

suitable delay, appears at the input pin of the other processor. But because of the asynchrony, more

than one signal may appear on the pin during a single cycle; the signal actually sensed and used to

compute the next state of the receiving processor may be ill-defined or nondetermistically defined.

The problem of interfacing two such processors is a common one and usually occurs whenever a digital

computer is connected to any other digital device (e.g., a modum, a disk drive, etc.).

Observe that in the ideal timing diagram, the signal falls from t: to £ on the writer's second cycle. This is

an idealization in two senses. First, the edge is not vertical or square, the signal changes continuously and

may "ring" before stabilizing at its new level. Second, it does not happen immediately upon the clock tick

that starts the second cycle. In fact, all that is promised by the ideal diagram is that the signal is stable and

low by the end of the cycle. The funny looking "multivalued ramps" in the conservative model depicted

in Figure 1 are intended to convey nothing more than that the signal is considered nondeterministically

defined throughout the indicated cycles. We then impose upon that conservative diagram the receiver's

clock ticks. Consider the receiver's first cycle. We do not know when during this cycle the receiver

samples the signal (the time at which sampling occurs may be data dependent). But since the signal varies

during the cycle, the exact time at which the receiver samples determines what is sensed. If it samples at

3

logical sequence sent t f 4:

sender's clock ticks I I I I

ideal signals sent _]

J I I I
some possible

signals sent

conservative model I I I I

of signals sent

receiver's clock ticks I I

signals received ?

f t t

I I I

I
I I I

I I I

I I

£ ?

Figure h How Asynchrony Mangles Signals

the "wrong" time it could even read an indeterminate signal that could induce a metastable state. Things

are simpler during the receiver's second cycle; the signal is constant at £ for the duration of the cycle and
hence we are assured that it reads an £.

The problem of metastability caused by reading on an edge cannot be solved perfectly by digital logic

alone. By cascading the asynchronous signal through several state-holding devices on successive clock

ticks of the receiver one can increase the probability that the signal stabilizes before it enters into the

determination of the next state. Such cascades are called "synchronizers" but there is some degree of

wishful thinking here since there remains a non-zero probability that the metastable state persists [22]. One

can also build devices with hysteresis, e.g., Schmitt triggers, that require well-defined input before

changing their output. Such devices can be used to sharpen an edge, but since these devices essentially just

narrow the band of indeterminacy, there is still some chance that metastability will slip in. In summary,

metastability is an engineering problem that apparently has no perfect solution. We do not attempt to

model iL Our model assumes that "reading on an edge" nondeterministically produces a t or an £.2 It is

up to the engineer to arrange that some well-defined signal is read on each cycle.

This however does not solve the communications problem. Nondeterministically replacing the question

marks in Figure 1 by ts and £s does not enable the recovery of the original signal stream. Even an

accurate analysis of which read cycles produce nondeterministic signals or how many such cycles there are

requires careful consideration of the two clock rates and their phase displacement. For example, as

illustrated in Figure 2, if the rates are nearly identical (the usual case) and the receiver's cycle is the shorter,

then, depending on the initial phase displacement (which can be arbitrary for two physically independent

clocks), an edge in the arriving signals can affect two or sometimes three successive read cycles.

Nondeterministically replacing the question marks by ts and £s has the effect of blurring or shifting the

edges in the signal. Differences in the clock rates of the two processors may stretch or shrink the apparent

duration of the signal.

Communications protocols have been developed to deal with these problems. To avoid the first problem,

2It is possible to model indeterminate signals logically. Three- and even four-valued logics are common in hardware description

languages. We have mechanically proved that in one such logic it is impossible to build even a simple asynchronous edge detector
with perfect reliability. The NQTHM transcript is available upon request.

4

logical sequence sent

sender's clock ticks

ideal signals sent

conservative model

of signals sent

receiver's clock ticks

signals received

t t f f f

I i I I I

L

t t t

l i i

I
I I I I I I I

I I I I I 1 I

t ? ? f ? ?

I

I

? t

I

I

Figure 2: One Edge Can Influence Several Read Cycles

the asynchronous sender generally encodes its message as a waveform with a relatively long wavelength

compared to the cycle time of the receiver, giving the receiver plenty of time to sample the signal away

from the edges. To overcome the second problem, the biphase mark protocol encodes the message with

"frequency modulation" of the long wavelength "carrier." This allows the receiver to "phase lock" onto

the artificially slower clock of the sender.

In the biphase mark protocol (see Figure 3), each bit of message is encoded in a "cell" which is logically
divided into what we call a "mark subcell ''3 and a "code subcell." During the mark subcell, the signal is

held at the negation of its value at the end of the previous cell, providing an edge in the signal train which

marks the beginning of the new cell. During the code subcell, the signal either returns to its previous value

or does not, depending on whether the cell encodes a t or an £. The receiver is generally waiting for the

edge that marks the arrival of a cell. Upon detecting the edge, the receiver counts off a fixed number of

cycles, here called the "sampling distance," and samples the signal there. The sampling distance is

determined so as to make the receiver sample in the middle of the code subcell. If the sample is the same

as the mark, an £ was sent; otherwise a t was sent. The receiver then resumes waiting for the next edge,

thus "phase locking" onto the sender's clock.

Of course, asynchrony may blur or shift the edges of the code subcell, but if the code subcell is sufficiently

long, some region of it (away from the edges) will be well-defined. We call this region the "sweet spot."

The receiver should always sample from the sweet spot. What might prevent this? A plausible scenario is

that the receiver is late detecting the mark because of nondeterminism and then waits too long before

sampling because its clock is slower than the sender's.

This scenario should make it clear that the extent to which the protocol relies upon the near agreement of

the two clock rates is dependent upon how far the sweet spot is from the mark. It is while measuring out

this time interval (while creating the cell in the sender or waiting to sample in the receiver) that the protocol

implicitly assumes the two processors cycle at the same rate. If two clocks are used to measure out some

absolute time interval, and the two clock's rates are fixed but slighly different, their discrepancy in the

measurement is linearly proportional to the length of the interval measured. Thus, the closer the sweet spot

3The word "mark" in "biphase mark" comes from the "Automatic Recorder" of 19 th century telegraphy where the line idle state

produced a mark on a rotating drum and the arrival of a pulse lifted the stylus to produce a space [8]. The names MARK and SPACE

were adopted for logical 1 and logical 0 respectively. However, except in the name "biphase mark," our use of the word "mark" is

intended in its nontechnical sense, i.e., "a conspicuous object serving as a guide for travelers" [24]. Thus we speak of the "mark

subcell," so named because it indicates the beginning of the cell, and of "detecting the mark."

message
t f f

cell [--I

celledges -- I I I

signals sent -- --____J--_]

mark subcell _ [I I

code subcell / 0 _ 0 / _....._ 0
/

sampling distance _ if these two signals are
equal, an f was sent.

f t t

I I I

I [""!......I""_J--

if these two signals are
different, a t was sent.

Figure 3: Biphase Mark Terminology

is to the mark, the more tolerant the protocol is to different clock rates.

To analyze the behavior of the protocol in the face of asynchrony we must specify the cell size, subcell

sizes, and sampling distance. We study a conventional choice and an unconventional one. The

conventional choice is cell size 32, equally divided into two 16-cycle subcells, sampled on the 23 rd cycle

after mark detection. The unconventional choice is cell size 18, divided into a 5-cycle mark and a 13-cycle

code subcell, sampled on the 10th cycle after mark detection. The unconventional choice permits a faster

bit rate (since fewer cycles are spent on each bit) and tolerates more divergent clock rates (since the time

during which the clocks must "stay together" is smaller). Do they work?

In this paper we formally (see box) define a model of asynchrony and we formally state and prove the

theorem that, under the model, the 18-cycle/bit biphase mark protocol properly recovers the message sent,

provided the ratio of the two clock rates is between 0.95 and 1.05. According to [29] typical clocks are

incorrect by less than 15x10 6 seconds per second and the ratio of the rates of two such clocks are well

within our bounds. We have proved that the conventional choice of cell size also works, provided the ratio

of the clock rates is within 3% of unity, and we briefly indicate how the proof differs from the proof of the

18-cycle version.

2. Logical Foundations

We use the NQTHM "computational logic" described in [6].

Truth values, bits, and signals will all be represented by the logical objects t and f which are distinct

constants. We call these two objects the "Booleans" and we define a predicate, boolp, which recognizes
just them.

Definition.

(boolp x)

(or (equal x t) (equal x f))

Observe that, as in Lisp, we write function applications with the parentheses "on the outside." Thus, we

write (Iooolp x) to mean the value of the function boolp applied to x, i.e., boolp(x). As can be seen

Formalization

What do we mean when we say we define the model or state the theorem "formally?" We mean we

exhibit a formula that purportedly captures the idea. Because we are interested in mathematical proof,

we write our formulas in the language of a particular mathematical logic. A logic provides a language,

some axioms (formulas assumed to be true), and some rules of inference (truth preserving operations on

formulas). To prove a theorem is to derive that formula from the axioms using the rules of inference.

The logic we use is called the "NQTHM" or "Boyer-Moore" logic. Its language resembles Pure

Lisp; its axioms define the primitive functions for if-then-else, equality, and list and number

processing; its rules of inference include such familiar ones as "substitution of equals for equals,"

"every instance of a theorem or axiom is a theorem" and mathematical induction. We will explain the

logic as we go.

But how can we write a formula that says the biphase mark protocol works in the face of asynchrony?

Because the NQTHM logic is essentially just a programming language without side-effects, the whole

formalization problem can be recast as a programming problem:

Challenge: Write a Pure Lisp program (together with its subroutines) with the property that if the

program returns t on all possible inputs then you will believe that the biphase mark protocol works.

Ah! This is a straightforward programming problem. The solution is to write a "simulator" for the

system being modeled. That is, we will develop a Pure Lisp program that takes among its inputs a

message to be tested, the precise clock rates of the two processors, and their initial phase displacement

and delay, and simulates the encoding, sending, receiving, and decoding of the message. The

"simulator" will return t if the message is recovered and f otherwise.

But how can such a simulator be run on all possible inputs? Clearly it cannot be. That is where we use

proof. Since the simulator is just a collection of mathematically defined functions we can use

substitution, instantiation, and induction to show that the simulator always returns t.

by an inspection of the definition, (boolp x) is t if and only ifx is t or x is f.

The NQTHM logic imposes resuictions on equations purporting to be "definitions." These restrictions

insure that one and only one mathematical function satisfies the equation. Because of this assurance, we

can add such admissible definitions to the logic without rendering the logic inconsistent. The reader should

see [5, 6] for details. In this presentation we do not further concern ourselves with the admissibility of our

definitions.

We define the operations of "negation" and "exclusive-or" as follows.

Definitions.

(b-not x) = (if x f t)

(b-xor x y)

(if x

(if y f t)

(if y t f))

ThUS, (b-not t) isfand (b-xor t f) ist.

Fundamental to our formalization is the notion of a "bit vector" or a "finite sequence of Booleans." We

7

uselists(seebox)torepresentsuchobjects. The following function recognizes bit vectors.

Definition.

(bvp x)

(if (listp x)

(and (boolp (car x))

(bvp (cdr x)))

(equal x nil))

That is, (bvp x) is defined by cases. Ifx is a listp object, then its first element, (car x), must be

Boolean and the rest of its elements, (cdr x), must recursively satisfy bvp. On the other hand, if x is

not a listp object, it must be nil. An example bit vector is (list t t f f). That is, (bvp

(list t t f f))evaluatestot.

We shall use (len x) to denote the length of the list x, (app x y) to concatenate the lists x and y,

(nth n x) to fetch the n th element of the list x (where (car x) is the 0 th element), (cdrn n x) to

cdr the list x n times, and (listn n x) to make a list of n repetitions of the object x. We omit the

definitions of these simple functions.

We will use lists of Booleans (bit vectors) to represent streams of signals or "timing diagrams." For

example,

[J
i I I t I

W

1 cycle

I I

will be represented by the list (list t f f f t t) together with the fact that the length of a cycle is

w. An alternative way of writing the same list is (cons t (app (listn 3 f) (listn 2 t))).

3. The Model of Asynchrony

Consider two independently clocked processors, which we call the "writer" and the "reader." The output

pin of the former is connected by a wire to the input pin of the latter and this constitutes the only

communication between them. Imagine that on successive cycles the writer is specified to set its output pin

to the successive signals in some bit vector called the "writer's view." We wish to define a function,

async, which will map the writer's view into the sequence actually read by the reader, which we call the

"reader's view."

More precisely, we map the writer's view into any oneof the possible reader's views, since there is an

element of nondeterminancy here. One parameter of the model, called the "oracle," specifies how each

nondeterministic choice is to be made on a given application of the model; by varying this parameter one

can obtain all possible views by the reader.

Our model is based on three assumptions.

* The distortion in the signal due to the presence of an edge is limited to the time-span of the
cycle during which the edge was written. For example, we ignore intersymbol
interference [28].

• The clocks of both processors are linear functions of real time, e.g., the ticks of a given clock
are equally spaced events in real time. We ignore clock jitter.

List Processing

In the logic, lists are binary trees. Binary trees are ordered pairs constructed by the function cons

from any two objects. The functions car and cdr return the two objects. The function listp

recognizes just the objects produced by cons. That is, (listp x) is t or f depending on whether x

is an ordered pair. We use (nlistp x) as an abbreviation for "non-listp."

xl/(°°nl a b)

(aa= x)\ /_ /(oar x) (oo,i % (aoa. x,...(con. x ,±1))...)
/

a b lllst x 0 x l ... x)

Example Axioms xo_

(aa= (aoal • b))= • /
(adz (aonl a b))= b x_

/\(llatp (ooam • b))= t
(liltp nil) = f x. nil

We frequently define recursive functions on lists. For example, the "length" of a list x, written (len

x), is defined

Definition.

(len x)

(if (listp x)
(addl (len (cdr x)))

0).

Such definitions are usually read as "by cases." "If x is a listp, its length is obtained by adding

one to the length of its cdr; ifx is not a listp, its length is 0." Thus, (ion (list t t f f))
is 4.

Given two lists, we can "concatenate" (or "append") them using the function app,

Definition.

(app x y)

(if (listp x)

(cons (car x) (app (cdr x) y))

y).

We might paraphrase this as "To append a nonempty x to y, cons the first element (car) of x to the

result of appending the rest (cdr) of x to y. To append an empty x to y, return y." Thus,

(app (list 1 2) (list t f f))

(cons 1 (app (list 2) (list t f f)))

(cons 1 (cons 2 (app nil (list t f f))))

(cons 1 (cons 2 (list t f f)))

(list 1 2 t f f).

• Reading on an edge produces nondeterministically defined signal values, not indeterminate
values.

9

Our model of asynchronous communication has three passes, one implementing each of the assumptions

above. In Figure 4 we illustrate the passes. In pass 1, we identify those cycles in which the signal is

writer's view:

pass l Q

pass 2 l

pass 3 (

one possible

reader's view:

, t i t l f l f i f i t i t l t

I J

t8

-i_ i i l

tr

i i!

i

• I

t__C---q___J

i t i t , t , f i t t f i t I t i

Figure 4: The Three Passes in the Model

undetermined due to the non-zero switching times on the writer. This is indicated in the graph in Figure 4

by the multivalued ramps on two of the write cycles. Pass 2 combines the pass 1 output with certain timing

information (the cycle times, w and r, of the two processors and (roughly) their phase displacement,

tr-ts) to produce the signal on the pin during each read cycle (up to nondeterminacy). Pass 2 is the key

to the model and operates by reconciling all the signals on the pin during each read cycle. Pass 2 generally

smears the nondeterminacy over any read cycles which overlap with it. Pass 2 may lengthen or shorten the

length of the signal stream but does not change its basic shape. Pass 3 eliminates the nondeterminacy by

using the oracle to choose arbitrary values for undetermined signals.

It should be noted that our model puts no constraints on the relationship between the writer's cycle time

and the reader's. That is, one can apply this model to communication between two processors whose

clocks run at wildly different rates. For example, if the reader runs ten times as fast as the writer, it will see

roughly ten times more signals. The model is somewhat pathological if either processor runs infinitely fast

(i.e., has a cycle time of 0). We do not constrain the relationship between the clocks until we begin to

apply the model to prove that a certain protocol works.

We now back up and give a more detailed physical and formal explanation.

3.1 Pass 1

Consider the writer. On every cycle the writer sets the output pin to some value. If that value is the same

as the previous value of the pin, then the signal on the pin remains stable at that value for the entire cycle.

On the other hand, if the new value is different, then we assume the value on the pin is undetermined for

the duration of that cycle. This accounts for our lack of knowledge about when during the cycle the voltage

on the pin begins to change, how the voltage varies, and how long it takes it to become stable. Pass 1 in the

model thus introduces "multivalued ramps" for the duration of every cycle during which the signal

10

changes.Therampsinourdiagramsareformallyrepresentedbythe"signal" ' q, which is just a token

that will eventually be replaced nondeterministically. There is no need to distinguish "downward" ramps

from "upward" ones since they both mean the signal is indeterminate for the entire cycle.

The function formalizing pass 1 is called smooth and it takes the previous signal seen, x, and a sequence

of signals, 1st.

Definition.

(smooth x lst)

(if (nlistp 1st)

nil

(if (b-xor x (car Ist))

(cons 'q

(smooth (car ist) (cdr Ist)))

(cons (car Ist)

(smooth (car ist) (cdr ist)))))

Observe that smooth copies 1st, changing to ' q any signal that is different from the previous one, x. In

Figure 4, pass 1 is computed by (smooth t (list t t f_ f f e__ t t)), which replaces the

underscored signals by ' qs.

3.2 Pass 2

Now, let 1st be the output of pass 1. In pass 2 we simulate the arrival of these signals at the input pin of

the reader, consider the reader's cycles, and compute the signals read (up to nondeterminacy). Suppose the

first signal, (car lst), arrives at the input pin at time ts. 4 All successive signals arrive at intervals of

w, where w is the cycle time of the writer. Let tr be the time at which the reader's clock first ticks at or

after ts. Without loss of generality we assume ts _<tr < ts+w because if tr > ts+w then the hrst

signal of 1st is simply irrelevant since it does not persist into the reader's first cycle. Finally, suppose the

reader's cycle time is r. Given these parameters we can compute the entire list of signals read (up to

nondeterminancy). We call the function formalizing pass 2 warp and define it below.

Definition.

(warp ist ts tr w r)

(if (or (zerop r)

(endp ist ts
nil

(cons

(plus tr r) w))

(sig ist ts (plus tr r) w)

(warp (ist+ Ist ts (plus tr r) w)
(ts+ ist ts (plus tr r) w)

(plus tr r)

w r)))

The term (plus tr r), above, is the sum of tr and r and is the time at which the reader's clock next

ticks. The definition may be read as follows: If r is zero 5 or else if 1st does not have enough elements in

it to determine the next signal read, return the empty list nil. The second condition is checked by endp

which we discuss below. If r is nonzero and there are enough elements in 1st to determine the next signal

4More precisely, consider that tick of the writer'sclock that beganthe writecycle during which the first signal was written. Let ca
be the time at which that tick occurred. Let 8 be the delay along the wire connecting the writer to the reader. Then ts is to+& We
assume8 is constant.

5Omitting the (zerop r) test produces an inadmissible definition because the recursion describeddoes not terminate.

11

read,weusesig (describedbelow)to computethesignalreadduringthecurrentcycle,weusewarp

recursively to obtain the list of signals read on successive cycles and then we cons together the two results

to produce the list of all the signals read.

Configuration A

ist : s
o Sl S 2 S 3 S 4 Sj

ts

tr

Configuration B

Ist' :
S 2 S 3 S 4 S 5

ts'

tr'

Figure 5: The Recursion in warp

We explain further by referring to Figure 5. Configuration A of the figure depicts the formal parameters of

warp upon entry to (warp 1st ts tr w r). Note that 1st contains six signals, so s5 and that so
arrives at time ts and persists for time w. The first tick of the reader's clock is at time tr and starts a

cycle that persists for time r. By observing the diagram in Configuration A we see that the signals so, s1

and s2 impinge upon the pin during this read cycle. If they are all equal, say, to so, then so will be the signal

read on this cycle. But if any two are different, the signal read is nondeterministic (i.e., ' q). This is the

computation made by (sig Ist ts (plus tr r) w).

Configuration B of Figure 5 shows the parameters passed to the recursive call of warp from Configuration
A. The call in question is

(warp (ist+ ist ts (plus tr r) w)

(ts+ 1st ts (plus tr r) w)

(plus tr r)

w r)

The easiest argument term to understand is (plus tr r), passed as the new value of tr. That is the

time of the next tick of the reader's clock and is shown as tr' in Configuration B. The faint dotted line is

meant to indicate that tr' is tr+r from Configuration A. Lst' is the new value of 1st. Note that (in

this case) the first two signals have been removed from 1st. That is because they were used in the sig

computation for the current cycle and do not affect the sig computation at the next cycle. Note that se,
which was used by the sig computation, is still in lst' because it persists into the next cycle. Lst',

which is always some cdr of 1st, is computed by the function lst+ in the recursive call of warp. The

time at which the new first signal arrives, ts', is computed by the function ts+.

The four functions endp, sig, lst+, and ts+ are all very similar in that they scan 1st, knowing that the

first signal arrives at time ts and that subsequent ones arrive at intervals of w, and look for the first signal

12

thatpersistsintothenextcycle,i.e.,theonethatstartsat (plus tr r). The function endp returns t if

1st is exhausted before the desired signal is reached. Sig reconciles all the signals it reaches, using the

auxiliary function reconcile-signals. Lst+ returns the cdr of 1st starting with the desired signal.

Ts+ returns the arrival time of the desired signal. The definitions are shown below.

Definition.
(endp Ist ts nxtr w)

(if (nlistp ist)

t

(if (lessp (plus ts w)

(@ndp (cdr Ist}

nxtr w)

z))

Definition.

(reconcile-signals a b)

(if (equal a b) a 'q)

nxer)

(plus ts w)

Definition.

(sig ist ts nxtr w)

(if (nlistp Ist)

'q
(if (lessp (plus ts w) nxtr)

(reconcile-signals

(car 1st)

(sig (cdr ist) (plus ts w)

nxtr w))

(car ist)))

Definition. Definition.

(ist+ 1st ts nxtr w) (ts+ ist ts nxtr w)

(if (nlistp lst) (if (nlistp ist)

ist ts

(if (lessp nxtr (plus ts w)) (if (lessp nxtr (plus ts w))

ist ts

(1st+ (cdr 1st) (plus ts w) (ts+ (cdr 1st) (plus ts w)

nxtr w))) nxtr w)))

Readers familiar with NQTHM will have noticed that the arithmetic primitives used in warp treat their

arguments as natural numbers. That is, ts, tr, w, and r in this model are nonnegative integers. Since

time appears continuous, the reals or the rationals seem more appealing domains for these parameters.

However, the NQTHM logic does not support the reals. The rationals have been defined within the logic

and they were used when the model was first being formalized. However, the proof we will describe is

prim_'ily concerned with counting cycles. We found that the proof was complicated by the mix of (formal)

natural arithmetic and (formal) rational arithmetic. We decided to simplify matters by adopting natural

arithmetic entirely. It should be stressed that this is primarily a technical problem with the NQTHM

mechanization and its heuristics.

Inspection of the model will reveal that our use of natural arithmetic does not limit the applicability of the

model. In particular, if ts, tr, w, and r ale given as rational numbers, one could convert them to four

naturals over a common denominator and then do all the arithmetic on the numerators only, using natural

arithmetic. This observation relies on the fact that the model only iteratively sums and compares these
a b a+b

quantities. But _+_ = "a-, where the f_st "+" is that for rational arithmetic and the second is that for

natural arithmetic. A similar theorem holds for the "less than" relationships in the two systems.

An illustration of warp was presented in pass 2 of Figure 4. In that example, the input list was the output

of pass I, (list t t 'q f f 'q t t), ts was 0,tr was 75, w was 100, and r was 87. The

ou_ut of warp was (list t 'q 'q f 'q 'q 'q t). We used grosslymisma_hed w and r

merely so that it was easy to see that read cycle 5 (counting from 0) fell entirely within write cycle 5.

Exactly identical signal output can be obtained with more realistically matched clocks. For example, let us

measure time in tenths of picoseconds, e.g., units of 10 -t3 seconds. If the writer has a perfect 20MHz clock

then w is 500,000. Suppose the reader is nominally 20MHz but ticks faster so that in twenty million ticks it

13

countsoff .999996seconds.Thatis,r is 499,998 and the clock is gaining roughly 4x10 -6 seconds per

second, which is consistent with the clocks reported in [29]. Then if the first signal in the output of pass 1

reaches the reader 1 lxl0 -13 seconds before the reader's clock ticks, the output is as described in pass 2 of

Fig_e4. I.e.,(warp (list t t 'q f f 'q t t) 0 11 500000 499998) is(list t 'q

'q f 'q 'q 'q t).

3.3 Pass 3

It is the job of pass 3 to eliminate the nondeterministic signals using the oracle. The function formalizing

this pass is called det (for "determine").

Definition.

(det ist oracle)

(if (nlistp ist)
Ist

(if (equal

(cons

(car ist) 'q)

(if (car oracle) t f)

(det (cdr ist) (cdr oracle)))

(cons (car ist)

(det (cdr ist) oracle))))

The oracle parameter to our model is just an arbitrary list. The successive elements of the oracle are

matched with the successive ' qs in the list of signals to be processed, 1st. Each oracle element specifies

whether the corresponding ' q should be replaced by t or by f.6 Det merely copies the list of signals,

replacing each ' q as directed by the oracle.

3.4 Combining the Passes

Finally, to define async we compose the three passes.

Definition.

(async ist ts tr w r oracle)

(det (warp (smooth t ist) ts tr w r)

oracle)

Observe that we smooth the writer's view using t as the initial signal on the pin.
choice.

This is an arbitrary

4. The Biphase Mark Protocol

One use of a formal model of asynchrony is to investigate the circumstances under which communication

protocols work properly. We illustrate such a use of our model by considering a biphase mark protocol.

Recall Figure 3 where the protocol is informally described.

We will use an unbalanced configuration in which the mark subcell is just long enough to guarantee that it

will be detected and the code subcell is just long enough to guarantee that the sweet spot is always sampled.

See Figure 6.

6Theaxioms of the NQTHM logic define car and cdr to benon-f constants on non-liatps. Theeffect here is that if oracle
is too short it is implicitly extended with as many ts as required.

14

message _ t

A cell consists of

5 mark cycles followed -- I"", I

by 13 code cycles I I
/----

Eachcell is marked _---l--]--"_

by an edge.
L__

/ I
The receiver phase then samples

locks by waiting 10 cycles later

for an edge. and (receiver's clock).

f f f t t

I I I

L__hk__J L___..t__

If these two signals If these two signals

are the same. the are different, the

message bit is f. message bit is t.

Figure 6: Our Modified Biphase Mark Protocol

J..

In order to state a theorem about the protocol we must formalize it. In our formalization, the sizes of the

two subcells and the sampling distance are parameters that are not fixed until we state the correcmess

theorem.

4.1 Sending

We will formalize the send side of the protocol by defining a function that maps from messages to signal

streams, both of which are formally represented by bit vectors.

The fundamental notion in the protocol is that of the "cell." Each cell is a list of n+k signals. Each cell

encodes one bit, b, of the message, but the encoding depends upon the signal, x, output immediately before

the cell. Let _- be (b-not x). Let csig be (if b x _). Then a cell is defined as the concatenation

of a "mark" subcell containing n is followed by a "code" subcell containing k caigs.

Definition.

(cell x n k

(app (listn n

(listn k

Because (if b x

b)

(b-not x))

(if b x (b-not x)))) .

(b-not x)) reoccurs, it is convenient to define it as (csig x b). Observe that

the last signal in the cell is (csig x b).

To encode a bit vector, rang, with cell size n+k, assuming that the previously output signal is x we merely

concatenate successive cells, being careful to pass the correct value for the "previous signal."

Definition.

(cells x n k msg)

(if (listp msg)

(app (cell x n k (car msg))

(cells (csig x (car msg))

n k

(cdr msg)))

nil)

15

We adopt the convention that the sender holds the line high before and after the message is sent. Thus, on

either side of the encoded cells we include "pads" of t, of arbitrary lengths pl and p2. The formal

definition of send is

Definition.

(send msg pl n k p2)

(app (listn pl t)

(app (cells t n k msg) (listn p2 t))).

To send the message (list t f t t) with cells of size 1+2, padding the message at the front with

three ts and at the back with five ts, we use (send (list t f t t) 3 1 2 5). Its value is

shown in Figure 7.

(send

(list

(list t f t t) 3 1 2 5)

t t t_f f f_t t t t t)

Figure7: Sending (list t f t t)withCellsofSizel+2

4.2 Receiving

The receive side of the protocol will be formalized _ a function from signal streams to messages. We need

two auxiliary functions.

Scan takes a signal, x, and a list of signals, 1st, and scans 1st until it finds the first signal different from

x. Iflst happens to begin with a string ofxs, scan finds the first edge.

Definition.

(scan x ist)

(if (nlistp ist)
nil

(if (b-xor x (car ist))
ist

(scan x (cdr ist))))

For example, (scan t (list t t t f f f t))is (list f f f t).

Recv-bit is the function that recovers the bit encoded in a cell. It takes two arguments. The fLrst is the

0-based sampling distance, j, at which it is supposed to sample (e.g., if the cell length is 5+13, then j is

10). The second argument is the list of signals, starting with the hrst signal in the mark subcell of the cell.

Definition.

(recv-bit j ist)

(if (b-xor (car ist) (nth j ist))
t f)

The bit received is t if the first signal of the mark is different from the signal sampled in the code subcell;

16

otherwise,thebit receivedisf.

We can use scan and recv-bit to define the receive protocol. In our formalization, the receiver must

know how many bits, i, to recover. In an actual application this might be a constant or it might have been

transmitted earlier in a message of constant length. The list of signals on which recv operates should be

thought of as starting with the signal, x, sampled in the code subcell of previous cell. If i is 0, the empty

message is recovered. Otherwise, recv scans to the next edge (i.e., it scans past the initial xs to get past

the code subcell of the previous cell and to the mark of the next cell). Recv then uses recv-bit to
recover the bit in that cell and conses it to the result of recursively recovering i-1 more bits.

Definition.

(recv i x j ist)

(if (zerop i)
nil

(cons (recv-bit j (scan x ist))

(recv (subl i)

(nth j (scan x Ist))

J

(cdrn j (scan x ist)))))

Observe thatin its recursive call, the new list ofsignalsis the tail of 1st that begins with the signal

sampled by recv-bit. Thenew xis thatsignal.

To illustrate recv, let 1st be the list produced by the send expression in Figure 7. Then (recv 4 t 2

lst) is the original message, (list t f t t).

The phase locking is essentially implemented by scan. Observe that in all uses of ist, recv uses scan

to find the first edge. Thus, no matter how many trailing signals there are in a cell (due to the different

rates at which the two processors count), recv phase locks onto the beginning of the new cell. The clock

rates are crucially important only from the time the cell is detected to the time the code subcell is sampled.

5. The Theorem

Do send and recv cope with the problems introduced by asynchrony? We can address this question

formally now.

asyne

llllll[Qev

Figure 8: The Composition of send, async and recv

The diagram in Figure 8 suggests something we would like to prove about send, async, and recv: their

composition is an identity. Of course, this is true only under certain assumptions, which we must make

17

explicit.Thecompositionwewillstudyis

(recv (len msg)
t i0

(async (send msg pl 5 13 p2)

ts tr w r oracle)).

We discuss this term from the inside out, making our assumptions clear.

(send msg p1 5 13 p2) • We send some message msg in cells of size 5+13 with a leading pad of

p1 ts and a trailing pad of p2 ts. We will require that msg be a bit vector but it can have arbitrary length.

P1 and p2 are arbitrary (though, for technical reasons, we will require that the first one, at least, is a natural

number).

(async (send . . .) ts tr w r oracle) : The signal stream generated by send is fed, in turn,

to our model of asynchrony, which has the four clock parameters and the oracle as additional arguments.

The model itself imposes certain constraints on the clock parameters: all are nonnegative integers and ts <

tr < ts+w. Those conditions put no limitation on the applicability of our result; it would still address

arbitrarily clocked processors, arbitrary delay between them, and arbitrary phase displacement. However,

some restrictions must be imposed to make the composition an identity. First, we must assume that the

cycle times, w and r, are nonzero in order to avoid obvious pathological failures. Second, we must assume

that the cycle times are "in close proximity," which we will make precise by defining
17 w 19

(rate-proximity w r). The condition we wish to impose is T_ < r < _" But since we have limited

ourselves to natural arithmetic, we define rate-proximity equivalently via

Definition.

(rate-proximity w r)

(and

(not (lessp (times 18 w) (times 17 r)))

(not (lessp (times 19 r) (times 18 w)))).

We put no restrictions on oracle, thus addressing ourselves to all possible nondeterministic behaviors.

(recv (len msg) t 10 (async ...)): Finally, the output of our model is fed to the receiver.

We impose no additional restrictions due to this term. But note that the first three arguments to recv limit

the applicability of the theorem to cases in which we are trying to recover the correct number of bits of

message, the line is initially high, and each cell is sampled 10 cycles after mark detection.

The theorem we will prove, named "BPM18" for "Biphase Mark, 18-cycles/bit," is

Theorem. BPM 18

(implies

(and (bvp msg)

(numberp ts)

(numberp tr)

(not (zerop w))

(not (zerop r))

(not (lessp tr ts))

(lessp tr (plus ts w))

(rate-proximity w r)

(numberp pl))

(equal (recv (len msg)
t I0

(async (send msg pl 5 13 p2)

ts tr w r oracle))

18

_g)).

The theorem would appear simpler had we built in the constants 10, 5 and 13 as well as the pad lengths, pl

and p2, and the initial line value, t. We stated the theorem this way so it was convenient to experiment
with different values.

w 1 1

The definition of rate-proximity forces _ to be within _ of unity. For what it is worth, T_ is 0.05, or

somewhat more than 5%.

Formalization Revisited

Recall that the formalization problem can be cast as a programming problem:

Challenge: Write a Pure Lisp program (together with its subroutines) with the properly that if the

program returns t on all possible inputs then you will believe that the biphase mark protocol works.

BPM18 can be regarded as a Pure Lisp program that takes eight arguments: msg, ta, tr, w, r, p1, p2,

and oracle. For specifically given values of those eight arguments it is straightforward to compute

the value of the formula. The value will be t if the arguments satisfy the hypothesis and the conclusion

is true or if the arguments fail to satisfy the hypothesis. The value will will be f otherwise.

If BPM18 is a theorem, then this program will return t on all inputs. Suppose it is a theorem. Do you

believe that the biphase mark protocol always works under the hypothesis given? That is the

formalization problem.

6. Formal Experiments

Before attempting to prove anything about send and recv we simply execute them to illustrate how they

cope with aaync. Suppose we want to send the message (list t f t t), using our 5+13 cycle

protocol. To be concrete, we will precede the transmission with seven high cycles and follow it with

eleven highcycles. The appropriatesendexpressionis (send (list t f t t) 7 5 13 11). A

total of 90 write cycles are modeled in the output of this expression. The output is displayed graphically in

Figure 9.

Now suppose the writer has a cycle time of I00, suppose the reader has a cycle time of 96, and suppose the

first signal in the output arrives at the reader 30 time units before the reader's clock next ticks. Figure 9

shows (one o0 the received waveforms. The oracle argument to async determines which of the

waveforms is actually received. Recv must be able to cope with all of them. Observe that in this example,

a total of 93 read cycles are modeled. The cells parsed by recv consume varying numbers of cycles. This

variance is in part due to the slightly faster cycle time of the reader and in part to the nondeterministic

choices on where the edges are located.

Recv correctly recovers the message (list t f t t) in this example.

19

sQndT, 5,13, ii

asynCo, 30, z00.96, oracle

EQC_, t, i0

(llst t f t t)

-U 1 R__M__f--

I_l- 21cycles -'4_l_l'-17c)'clei-IPl_l" 21cycles -'1_1,41-19cyclea"_l

(list t f t t)

Figure 9: An Experiment with send, async, and recv

7. Proofs

BPM18 can be proved by transforming it into a slightly different form and then appealing to a more general

theorem which we prove by induction. We give the proof later. We do not include in this paper the entire

NQTHM transcript. Readers interested in the transcript should write the author. The transcript will

reproduce the entire proof on the released version of the NQTHM theorem prover.

Our proof strategy is roughly as follows.

• We derive the shape of the send waveform after it has been processed by the first two passes
of asyne, that is, we produce the ramped version of the received waveform. To do this we
shall have to develop a body of lemmas about asyne and its subfunctions. We call this the
"reusable theory" of aayne because it is independent of our particular application.

• We establish bounds on the lengths of each of the regions in the ramped waveform. This is
basically a continuation of the reusable theory.

• We move into recv and show that scanning across a ramp nondeterministically defines a
point in a region whose length is one larger than the ramp.

• Finally, this point is translated down the ramped waveform a fixed distance by cd_n, where

it becomes the sampling point, and is shown to fall in the "sweet spot"--that portion of the
code subcell unaffected by ramps. This final step requires proving two key inequalities that
establish that the sweet spot entirely contains the nondeterministically defined sampling
point. These inequalities are proved by appealing to the bounds on the lengths of the various
regions.

Because the message is of arbitrary length, all four of these steps are wrapped in an induction on the length

of the message and are applied in turn to that portion of the wave generated in response to a single bit of the

message.

20

7.1 The Reusable Theory of Async

7.1-A The Waveform Generators

While some steps in the proof are concerned with the peculiar properties of send and recv, most of the

work is in establishing general properties of async and its interaction with the waveform primitives, app
and listn.

In what sense are app and listn the "waveform primitives?" Informally, ideal signals are square

waves; in our formalism, these square waves are generated by combinations of listn and app

expressions--we use listns to generate either "high" or "low" horizontal lines and then use apps to

stick them together to form the vertical edges. As the signals get smoothed and warped in our model, the

square comers become multivalued ramps; these ramps are formally generated by more listn

expressions, only this time the signal repeated is ' q. Thus, from the formal or algebraic point of view, the

signal generators are app and listn. Because timing is crucial, we are also interested in the length, i.e.,

len, of such waveforms.

Given some input waveform, described formally, we would like to have enough symbolic machinery to

allow us to derive the waveform produced by async. We would like both the input and the output

waveforms to be described in terms of app and listn. Therefore, we seek a collection of theorems about

app, listn, len and the three passes of asyne. Most of the theorems express distributivity laws, e.g.,

how to express the smooth of an app as the app of two smooths. These theorems are independent of

the particular signals generated by the biphase mark protocol. They are a first step toward what we call a

"reusable formal theory" or "rule book" for async. They are only the first step because we stopped

when we had enough rules to prove biphase mark correct.

7.1-B Elementary Rules

There are a variety of rules about app and listn that we here take for granted, though they were stated

and proved in our mechanically checked work. We state a few as warm-up exercises.

Theorems.

app is associative:

(equal (app (app a b) c) (app a (app b c)))

app cancellation:

(equal (equal (app

(equal b c))

a b) (app a e))

fen of app:

(equal (len (app a b)) (plus (len a) (len b)))

len of listn:

(implies (numberp n)

(equal (len (listn n flg)) n))

fool's edge:

(equal (app (listn m flg) (listn n flg))

(listn (plus m n) flg))

The last rule may bear explaining. Generally when we see the app of two listn expressions it describes

an edge. But if the signal repeated by the first listn is the same as that repeated by the second, there is

no edge and the app can be collapsed into a single listn. That is, if you draw a horizontal line at

21

"high" followed by a horizontal line at "high" you get a (longer) horizontal line at "high."

We also assume all the usual theorems of integer arithmetic.

7.1-C Rules about Smooth

Suppose we are confronted by an application of async to the app of some listns, i.e., we are trying to

derive the shape of the waveform after asyne has mangled it. The definition of async can be expanded

into a composition of smooth, warp, and det. If we can distribute these functions over app and listn

we can derive the shape of the output. We treat smooth and det first and then turn to the much more

complicated warp.

Recall that smooth takes as its first argument a Boolean flag, flgl, which is the "signal just previously

passed" while smoothing a waveform supplied in the second argument. Some important theorems about

smooth are shown below.

Theorems.

(equal (len (smooth flg ist)) (len ist)).

(implies (not (b-xor flgl flg2))

(equal (smooth flgl (listn

(listn n flg2)))

n flg2))

(implies (and (b-xor flgl flg2)

(not (zerop n)))

(equal (smooth flgl (listn n flg2))

(cons 'q (listn (subl n) flg2))))

(implies (not (b-xor flgl flg2))

(equal (smooth flgl

(app (listn n flg2)

(app (listn n flg2)

(smooth flgl rest))))

rest))

(implies (and (b-xor flgl flg2)

(not (zerop n)))

(equal (smooth flgl

(app (listn n flg2) rest))

(app (smooth flgl (listn n flg2))

(smooth flg2 rest))))

The first says that smooth does not change the len of the waveform. The second rule says that

smoothing a list of n repetitions of flg2 is a no-op if the signal just passed is Boolean-equivalent to

flg2. I.e., no edge, no ramp. The third rule says that smoothing a list ofn repetitions of flg2 produces a

ramp followed by n-1 repetitions of flg2, if the signal just passed is different from flg2 and n is

nonzero. The last two rules consider how to smooth a wave that starts with n repetions of flg2 and then

continues with some signals rest. If the signal just passed is equivalent to flg2, we can skip the

smoothing of the initial segment and just smooth rest. If the signal just passed is different, we must

smooth the initial segment (which, by the second rule, will produce a ramp) and then smooth rest, using

flg2 as signal just passed.

These theorems, and all other theorems displayed in this paper, have been proved mechanically with the

NQTHM theorem prover (see box).

22

The NQTHM Theorem Prover

The NQTHM logic is supported by a mechanical theorem proving system [6]. The system enforces all

the rules of the logic and also knows hundreds of heuristics for proving theorems in the logic. The user

interacts with the system by submitting proposed definitions and theorems. The system checks each

definition for admissibility and tries to prove each theorem. When it is successful, the theorem is

processed into a "rule" and stored in a data base for future use.

The system's proof attempts are driven by its heuristics and the rule base. When the system fails to

find a proof, the user may guide it by submitting easier theorems that, when used as rules, lead the

system to the proof it missed. To guide the theorem prover to the proof of a hard theorem the user must

know a proof of the theorem and must understand how the system derives rules from theorems. In

essence, the user programs the theorem prover in the art of proving particular kinds of theorems. Since

the system must prove everything before using it, the user bears no responsibility for the correctness of

proofs.

The system prints its proof as it goes. Users learn how to read these proofs so they know when the

system is going down a blind alley. Here is the output produced for

Theocem. LEN-APP

(equal (len (app a b)) (plus (len a) (len b))).

Proof.

Call the conjecture *I.

Perhaps we can prove it by induction. Three inductions are

suggested by terms in the conjecture. They merge into two likely

candidate inductions. However, only one is unflawed. We will induct

according to the following scheme:

(AND (IMPLIES (NLISTP A) (p A B))

(IMPLIES (AND (NOT (HLISTP A)) (p (CDR A) B)) (p A B))).

Linear arithmetic, the lemmas CDR-LESSEQP and CDR-LESSP, and the

definition of NLISTP can be used to prove that the measure (COUNT A)

decreases according to the well-founded relation LESSP in each

induction step of the scheme. The above induction scheme leads to

two new goals:

Case 2. (IMPLIES (NLISTP A)

(EQUAL (LEN (APP A B))

(PLUS (LEN A) (LEN B)))),

which simplifies, opening up the definitions of NLISTP, APP, LEN,

EQUAL, and PLUS, to:

T.

Case I. (IMPLIES (AND (NOT (NLISTP A))

(EQUAL (LEN (APP (CDR A) B))

(PLUS (LEN (CDR A)) (LEN B))))

(EQUAL (LEN (APP A B))

(PLUS (LEN A) (LEN H)))),

which simplifies, applying PLUS-COMMUTES1, CDR-CONS, and PLUS-ADD1,

and unfolding NLISTP, APP, and LEN, to:

T°

That finishes the proof of *I. Q.E.D.

[0.0 0.6 0.3]

The system refers to rules by name, e.g., PLUS-COMMUTES1. LEN-APP is the name of the rule

derived from this theorem. The time taken to do the proof is 0.6 seconds on a Sun Microsystems 3/60.

23

7.I-D Rules about Det

The crucial rules about det are shown below.

Theorems.

(equal (len (det ist oracle))

(len ist))

(implies (boolp flg)

(equal (det (listn n flg)

(listn n flg)))

oracle)

(equal (det (app Istl ist2) oracle)

(app (det istl oracle)
(det ist2 (oracle* istl oracle))))

The first says that det does not change the length of the waveform. The second says that if flg is

Boolean (in particular, if flg is not ' q), then determining (listn n flg) with any oracle is a no-op,

i.e., no ramps, no nondeterminacy. The third rule tells us we can distribute det over an app--but note

that the theorem mentions a function we have not seen before, oracle*. This function was defined

precisely so that we could state the distributivity rule for det and app. Recall that det cdrs the oracle

every time it sees a ' q in its list of signals. Consider the oracle that det is using at the time it finishes

processing lstl in (app lstl lag2) : it is the original oracle cdred once for every 'q in lstl.

Oracle* is defined to be just that oracle.

Definition.

(oracle* 1st oracle)

(if (nlistp 1st)
oracle

(if (equal (car ist) 'q)

(oracle* (cdr ist) (cdr oracle))

(oracle* (cdr ist) oracle)))

Observe that as we apply the distribution law to a right-associated nest of apps, the oracle argument

becomes increasingly messy as calls of oracle* pile up. It turns out that we do not care. Since the

oracle is arbitrary, the one returned by oracle* may as well be too. None of our theorems require us to

investigate the structure of the oracle.

Before leaving this section, let us get a glimpse of where we are going. Suppose we have a term such as

(async (send msg pl 5 13 p2) ...).

Note that we have underlined send above. This is merely intended to draw the reader's eye to the term in

question. By "opening" or "expanding" the definition of send--that is, replacing the call of send by

its body and simplifying the result-- we can expose the fact that it generates the leading pad with app and

listn. Thus, (async (send msg pl 5 13 p2) ...) becomes

(async [app (listn pl t) ...] ...) .

Note that we have used square brackets to delimit the new material. These brackets should be read as

parentheses. Note that we have also underlined a new focal point. By expanding the definition of asyne

we see that it is a composition of smooth, warp, and det,

[det (warp (smooth t (app (listn pl t) ...)) ...) ...] .

We can distribute the smooth over the app and observe that there is no initial edge because the previous

signal on the pin is assumed to be t and the waveform starts with a string of ts. Thus, our term becomes

24

(det (war_ [app (listn pl t) (smooth t .. .)] ...) ...) •

We have not yet shown how to distribute warp over app but we will. Unlike the other passes, warp may

change the length of the waveform and we get

(det [app (listn pl t) (warp (smooth t ...) ...)] ...),

where pl is some expression involving pl and the clock parameters of warp. Finally, we can distribute

the dee over the app and then observe that since t is Boolean the det of (listn pl t) is (listn

pl t). The result is

(app (listn pl t) (det (warp (smooth t ...) ...) •• .)) •

We have succeeded in getting the initial pad of ts out of the sender, through the model (which may change

its length), and into the jaws of the receiver!

7.1-E Rules about Warp

Recall that warp takes four clock parameters in addition to the list of signals to be processed.

parameters are usually assumed to satisfy

Definition.

(clock-params ts tr w r)

(and (numberp ts)

(numbe rp tr)

(not (lessp tr ts))

(lessp tr (plus ts w))

(not (zerop w))

(not (zerop r))) .

Those

7.l-E(1) The Length of Warp. The number of signals coming out of warp is related to the number

going in via

Theorem.

(equal (len (warp ist ts tr w r))
(n* (len ist) ts tr w r)).

Note that we introduce an auxiliary function, n*, to express the relationship. We could define n*

algebraically. Under the assumption (clock-params ts tr w r), we can show that (n* n ts

isLn×w-<tr-t ,)jtr w r) " ' -. This fact will be useful when we need to bound the number of signals. But for
r

our present purposes, it is easier to deal with a recursive definition of n* that mimics the way warp

tee urses.

Definition.

(n* n ts tr w r)

(if (or (zerop r)

(nendp n ts (plus tr r) w))
0

(addl (n* (nlst+ n ts (plus tr r) w)

(nts+ n ts (plus tr r) w)

(plus tr r)
w r)))

The number of signals in the output of warp depends on the number in the input, but not on the identities

of the signals. Thus, we have chosen to make n*'s first parameter be the number of input signals rather

25

than the signals themselves. We therefore have to define auxiliary functions nendp, nlst+, and nts+

which are analogous to endp, 1st+, and ts+ except that they take the length of the waveform (and, in the

case of nlst+, return the length of the waveform that 1st+ returns). The definitions of these functions

are exactly analogous to those of their counterparts and we omit them for brevity.

The proof of the theorem that n* is the length of warp is by an induction "unwinding" warp (see box).

It requires the analogous lemmas connecting endp to nendp, 1st+ to nlst+, and ts+ to nts+.

Theorems.

(equal (endp ist ts tr w)

(nendp (len Ist) ts tr w))

(equal (len (ist+ ist ts tr w))

(nlst+ (len ist) ts tr w))

(equal (ts+ ist ts tr w)

(nts+ (len Ist) ts tr w))

Recursion and Induction

Recursion and induction are duals. The execution of a recursive definition proceeds by decomposing

composite objects into simpler components until the answer is obvious. An inductive proof shows how

the truth of a proposition is preserved as one uses simple objects to construct composite ones. This

duality is often useful in discovering proofs of theorems about recursive functions. By choosing an

induction that "unwinds" a recursive function, you can set up a base case in which the function

computes the answer trivially and an induction case in which the induction hypothesis provides exactly
the information you need to know.

For example, consider the following recursive prescription for deciding if i is an even number. If i is 0,

the answer is "yes"; if i is 1, the answer is "no"; otherwise recursively ask whether/-2 is even.

Now consider the proposition: "if i is even andj is even, then i+j is even."

Proof. Let us induct so as to unwind "i is even."

Base Case 0. Suppose i is 0. In this case, the proposition becomes "if0 is even andj is even, then 0+j

is even" which simplifies to the obvious truth "ifj is even thenj is even."

Base Case 1. Suppose i is I. Here the proposition becomes "If 1 is even and ... then ..." but since 1 is

not even (as the definition of even tells us) the proposition is true because its hypothesis is vacuous.

Inductive Case. Suppose i is not 0 and not 1. We may assume the proposition with i-2 replacing i.

That is, ourlnduction Hypothesis is "if i-2 is even andj is even then i-2 +j is even." We must prove

"if/is even andj is even, then i +j is even."

By the definition of even this is

"if/-2 is even andj is even, then (i +j)-2 is even."

But by arithmetic this is

"if i-2 is even and j is even, then i-2 + j is even,"

which is our induction hypothesis. Q.E.D.

26

7.1-E(2) Distributing Warp over Listn. If there are no ramps in the input to warp then the waveform

passes through unchanged except for its length,

Theorem.

(implies (and (numberp n)

(clock-params ts tr w r))

(equal (warp (listn n flg) ts tr w r)

(listn (n* n ts tr w r) flg))).

This theorem is proved by an induction that "unwinds" (n* n ts tr w r).

7.1-E(3) Distributing Warp over App. Warp distributes over app,

Theorem.

(implies (clock-params ts tr w r)

(equal (warp (app istl ist2) ts tr w r)

(app (warp istl ts tr w r)

(warp (app (ist* istl ts tr w

(ts* istl ts tr w r)

(tr* istl ts tr w r)

w r)))).

r) 1st2)

Again we see that we have to define auxiliary concepts to express the theorem. As warp processes the list

of signals, weakly decreasing the length of the list each step, ts and tr increase as cycles of lengths w and

r are laid out against eachother. If the list of signals is (app istl lst2) then at some point warp

will need to look at the first signal in 1st2. At that point, warp's 1st, ts and tr parameters will have

some values, lst*, ts* and tr*. Lst* will be some cdx of (app lstl 1st2) ; in fact, it will be (app

Istl* 1st2) where lstl* is some edx of 1st1. Lstl* will not necessarily be empty: it may contain
many signals, just not enough to account for the entire read cycle from tr* to tr*+r. The functions lst*,

ts* and tr* compute lstl*, ts*, and tr*.

Definition.

(ist* Ist ts tr w r)

(if (or (zerop r)

(endp ist ts (plus tr r) w))

ist

(Ist* (ist+ ist ts (plus tr r) w)

(ts+ ist ts (plus tr r) w)

(plus tr r)

w r})

Observe that this definition is analogous to warp's except that instead of building up the output waveform

it just returns the value of the 1st parameter when the recursion terminates. The definitions of ts* and

tr* are analogous but return the final values of the ts and tr parameters. We also define nlst*, nts*,

and ntr*, the versions of these three functions that operate on the length of 1st rather than on 1st itself

(and, in the case of nlst*, return the length of the result returned by lst*). For example,

Definition.

(nlst* mts tr w r)

(if (or (zerop r)

(nendp n ts (plus tr

n

(nlst* (nlst+ n ts (plus

(nts+ n ts

(plus tr r)

w r))

r) w))

tr r) w)

(plus tr r) w)

27

We prove the obvious theorems about these functions and their counterparts, e.g., (fen (ist* Ist ts

tr w r))is (nlst* (len ist) ts tr w r).

The proof of the distribution law for warp over app is by an induction unwinding (warp 1st1 ts tr

w r). The proof requires several analogous lemmas about how endp, lst+, ts+ and sig handle app,

e.g.,

Theorems.

(implies (and (not (endp 1st1 ts tr+ w))

(not (zerop w)))

(not (endp (app istl ist2) ts tr+ w)))

(implies (and (not (endp istl ts tr+ w))

(not (zerop w)))

(equal (ts+ (app istl ist2) ts

(ts+ istl ts tr+ w)))

tr+ w)

7.1-E(4) Warping in the Vicinity of a Ramp. When we distribute warp over (app 1st1 lst2) we

get two warp expressions. The first one is simply the warp of lstl. But the second one, which

intuitively is the warp of lst2, actually depends on what happens as warp crosses the "gap" between

1st1 and 1st2. An example makes this clear.

Suppose that the input waveform is (app (listn n t) rest). The distribution law tells us that the

warp is

(app (warp (listn n t) ts tr w r)

(warp (app (ist* (listn n t) ts tr w r) resl)
(ts* (listn n t) ts tr w r)

(tr* (listn n t) ts tr w r)

w r)).

Of course,we know that(warp (listn n t) ts tr w r) is(listn (n* n ts tr w r)

t) and so the initial part of the emerging waveform is known. But we cannot yet see how rest emerges

because we have not driven warp across the gap. The last few remaining signals in the first part must be

processed in conjunction with the first few signals of rest. One read cycle spans this gap, the one that starts

attheume computed by (tr* (listn n t) ts tr w r).

Because warp is used exclusively after smooth (and the use of the fool's edge rule), the first signal after

a string of ts (or fs) will be a ramp. That ramp will necessarily participate in the reconciliation of the

signals arriving during the read cycle identified by tr*. It may influence several read cycles, causing

warp to produce a string of ramps. If w and r are within a factor of 2 of eachother, i.e., neither cycle time

is long enough to completely contain two cycles of the other processor, then a single ramp coming into

warp can produce 1, 2, or 3 ramps coming out. We illustrate the three possibilities in Figure 10.

In Figure 10 we show how warp passes through the ramp in (app (listn n t) (cons 'q

rest)) in three different contexts involving how the two series of cycles overlap. Recall that the read

cycle that starts at tr* is, by definition, the f_st read cycle that is influenced by the ramp. That cycle may

also be influenced by the last few signals in the first part of the incoming waveform, in this case, the last

few ts of (listn n t). Lst* is, by definition, those last few signals-- the signals preceding the ramp

that must be reconciled with the ramp. Ts* is the arrival time of the first signal in lst*.

In Configuration A, the read cycle that starts at tr* entirely consumes the ramp. In the picture, we show

1st* as containing one signal, the last one preceding the ramp. This is just one of two possibilities. It is

28

Configuration A

writer' s cycles

reader's cycles

(app (listn n t) (cons 'q rest))

_ _ _ \ / /N.____ _ _

tr*

'q

Configuration B

writer's cycles

reader's cycles

i

A

ts* N Ist* i

tr*

T

J J I

,q 'q

Configuration C

writer's cycles

reader' s cycles

ts* I I

tr*
T

I I I I

'q 'q 'q

Figure 10: Warping Across a Ramp

possible for lst* to be empty (i.e., for the signals preceding the ramp to determine a whole number of

read cycles). In Configuration B, the read cycle at tr* splits the ramp so that it falls into two read cycles.

Again, our picture shows one of several possibilities regarding 1st*: it contains the last two signals

preceding the ramp here, but if the reader's cycle time were shorter it could contain only the last signal or

no signals. Finally, in Configuration C, the read cycles fall so that the one after tr* is entirely consumed

by the ramp. If the read cycle can be arbitrarily shorter than the write cycle, an arbitrary number of ' qs

might emerge from warp due to a single ramp. But in our reusable theory about warp we chose to limit

our attention to processors whose cycle times are within a factor of 2 of eachother.

Once warp has gotten past the ramp, how many signals remain in rest to process? In the three

configurations illustrated, the first signal in rest is always involved in the determination of the first read

cycle after passing the ramp. But this need not be the case. To see why, consider Configuration B and

slide the reader's cycles down about half a write cycle, so that lst* now contains only one element and

the first signal of rest is consumed in emitting the second ' q. Under our "factor of 2" assumption, there

are only two cases: no signals from rest are consumed in passing the ramp or one signal is consumed.

2g

The observations just made can be combined with our previously proved theorems about warp, app, and

listn to derive the following extremely useful rule.

Theorem.

(implies (and (clock-params ts tr w r)

(lessp w (times 2 r))

(lessp r (times 2 w))

(numberp n)

(lessp 2 (len rest)))

(equal (warp (app (listn n flg) (cons 'q rest))
ts tr w r)

(app (listn (n* n ts tr w r) flg)

(app (listn (nq n ts tr w r) 'q)

(warp (cdrn (dw n ts tr w r) rest)

(ts n ts tr w r)

(tr n ts tr w r)

w r)))))

The functions nq, dw, ts, and tr will be discussed below, but first let us consider this theorem. It

addresses itself to warping across a ramp in the general case where the ramp is preceded by an arbitrarily

long stable signal. The clock rates must be within a factor of 2 and there must be at least one signal after

the ramp. The theorem tells us that the emerging signal is composed of three parts. First, we get the

warped image of the long stable signal (possibly stretched or shrunk), i.e., (listn (n* n ts tr w

r) flg). Then we get a certain number of ramps, (listn (nq n ts tr w r) 'q), where the

function nq tells us how many. Nq, defined below, is either 1, 2, or 3. Finally we get the warped image of

some cdr of rest. The function dw determines how many signals are chopped off of rest and its value

is either 0 or 1. The values of ts and tr used while warping the rest are computed by the functions ts

and tr. This is a beautiful result because it formalizes and makes precise the claim that warp stretches or

shrinks the waveform without altering its basic shape.

The proof of the above theorem is tedious but straightforward, given our prior results. The general theorem

for warping an app applies and, together with the theorem for warping a listn, explains the (listn

(n* n ts tr w r) flg) of the result. We then are left with warping across the ramp and into

rest. We do that entirely with case analysis as suggested by Figure 10.

Here are the definitions of the new functions used in the theorem. We only explain the first, nq and its

subroutine nqg. The others are similar. The task of nq is to compute the number of ' qs emitted by warp

in response to a single ramp preceded by n identical signals. Warping across those n signals, starting at ts

and tr, will bring us to some tail, which we have called lstl*, whose signals must be reconciled with the

ramp. The tr and ts parameters of warp at that point are (nts* n ts tr w r), abbreviated as ts

below, and (ntr* n ts tr w r), abbreviated as tr below. Lstl* is of length (nlst* n ts tr w

r), which we henceforth abbreviate as k. The ramp is processed with those k signals, starting at ts and tr.

It influences every read cycle that intersects with it, causing each to be nondeterminate. How many are

there? That depends on how successive cycles fall. For example, if tr+r (the start of the next read cycle) is

greater than or equal to ts+kw+w (the arrival time of the signal after the ramp), then only one read cycle is

influenced. Continued case analysis leads to the following definition of nq.

Definition. Definition.

(nq n ts tr w r} (nqg k ts tr w r}

(nqg (nlst* n ts tr w r) (if (lessp (plus r tr)

(nts* n ts tr w r) (plus w ts

(ntr* n ts tr w r) (if (lensp (plus r

w r) (plus

3 2)

(times w k)))
r tr)

w ts (times w k)))

30

i)

Summarizing, the nlst*, nts*, and ntr* expressions in nq determine the parameters warp has when it

first has to process the ramp, and nqg takes those parameters and does a case analysis to determine how

many ' qs are emitted before getting past the ramp.

The definitional styles of dw, ts, and tr are identical and we display them without comment. Of course,

the case analysis in each is unique.

Definition.

(dw n tim tr w r)

(dwg (nlimt* n tim tr w r)

(nts* n tim tr w r)

(ntr* n ts tr w r)

w r)

Definition.

(tim n tim tr w r)

(timg (nlst* n tlm tr w r)

(ntis* n ts tr w r)

(ntr* n tim tr w r)

w r)

Definition.

(tr n tlm tr w r)

(trg (nlimt* n tim tr w r)

(ntis* n tlm tr w r)

(ntr* n tlm tr w r)

w r)

Definitlon.

(dwg k tlm tr w r)

(if (leimimp (pluim r tr)

(pluim ts w (timeim k w)))

(if (leimimp (pluim r r tr)

(pluim t8 w w

(timeim k w)))

o 1)

(if (equal (pluim r tr)

(plus tim w (timaim k w)))

0

(if (and (loimimp (pluim tim w (tlmeim k w))

(pluim = tr))

(lessp (plus r tr)

(plus tim w w

(tlmeim k w))))
0

(if (leimimp (pluim r tr)

(plus tlm w w (timeim k w)))

o x))))

Definition.

(tsg k tim tr w r)

(plus tim

(times w k)

w

(times w (dwg k tim tr w r)))

Definition.

(trg k tlm tr w r)

(plus tr (tlmeim r (nqg k tim tr w r)))

Of course, the accuracy of this case analysis is questionable until the theorem showing how warp

processes a ramp is proved. 7

Itshould be obse_ed that (clock-params ts tr w r) implies (clock-params (ts n ts

tr w r) (tr n ts tr w r) w r), provided n is numeric and w and r are within a factor of 2 of
eachother.

This completes our development of the reusable theory of async.

7Indeed, we did the analysis incorrectly many times before finally producing the correct one.

31

7.2 Bounding Certain Functions

The reusable theory introduces the functions nq, dw, and n* which are used in the determination of the

lengths of various parts of the received waveform. It is useful in our coming proof to establish bounds for

these functions.

7.2-A Bounding nq

Nq is the width of the nondetermistic region caused by warping a single ramp. From the definition of nq

and its subfunction nqg it is obvious that 1 < (nq n ts er w r) _<3.

7.2-B Bounding dw

Dw is the number of signals consumed by warp immediately after a single ramp. From the definition of

dw and its subroutine dwg, it is obvious that 0 < (dw n ts tr w r) < 1.

7.2-C Bounding n*

N* is the length of the result of warping a horizontal region of the waveform. That is, (warp (listn n

flg) ts tr w r) is (listn (n* n ts tr w r) flg). Under the assumption

(clock-params ts tr w r), we can show that (n* n ts tr w r) isLn_-(tr-t')-Jr . This

algebraic expression of n* can be proved by an induction unwinding (n* n ts tr w r) and using

properties of nendp and nts+ and natural number arithmetic.

We are interested in bounds on n*. However, to derive interesting bounds we must impose some

constraints on the cycle times w and r since otherwise (n* n ts tr w r) can be arbitrarily larger or

smaller than n. Because we are headed toward the BPMI8 theorem, where we assume

(rate-proximity w r), i.e., that 18 ticks of length w is between 17 and 19 ticks of length r, we

investigate the bounds on n* in that context.

The following two theorems are fairly straightforward applications of the algebraic identity above and the

usual properties of natural number arithmetic.

Theorem. N*-lower-bound

(implies (and (clock-params ts tr w r)

(rate-proximity w r)

(numberp n)

(lessp n 18))

(not (lessp (n* n ts tr w r)

(subl (sub1 n)))))

Theorem. N*-upper-bound

(implies (and (clock-params ts tr w r)

(rate-proximity w r)

(numberp n)

(lessp n 18))

(not (lessp n (n* n ts tr w r))))

Roughly speaking, ifw and r are in proximity and n<18, then

n-2 < (n* n ts tr w r) < n.

In a truly general reusable theory of async we would derive bounds theorems that did not refer to the

particular notion of proximity u._.zl in the intended application.

32

7.3 Scanning across a Ramp

Using the general theory of async we will be able to derive the form of the wave reaching the receiver.

We now consider how the receiver reacts.

Because of

Theorem.

(equal (scan flg (app (listn n flg) rest))

(scan flg rest))

it is easy to prove by induction that

Theorem.

(equal (recv n flg k (app (listn m flg) rest))

(recv n flg k rest)).

That is, the receiver simply ignores the leading signals it is scanning past.

Eventually then the receiver will be confronted with a ramp of some arbitrary length followed by a region

of parity opposite that being scanned. That is, the receiver will be confronted with a nondeterministically

defined edge. We need to say how scan deals with such an edge. To state the desired lemma we have to

define two new auxiliary functions, no and scan-oracle. Their definitions are obvious from the lemma

we prove,

Theorem.

(implies (and (lessp 0 n)

(b-xor flgl flg2))

(equal (scan flgl (app (det (listn nq 'q) oracle)

(app (listn n flg2) rest)))

(app (det (listn (no flgl nq oracle)

'q)
(scan-oracle flgl nq oracle))

(app (listn n flg2) rest)))) .

Observe that on the left-hand side of the conclusion, scan is scanning past flgl and has encountered a

ramp of length nq followed by a nonempty region of parity opposite that of flgl. Where does scan

stop? The right-hand side tells us: it stops and returns a ramp of length (no flgl nq oracle)

followed by everything past the ramp. The term (no flgl nq oracle) is defined to be the number

of cycles in a ramp of length nq after the first one at which oracle differs from flgl. It is an easy

con_quence of thedefinitionofno that0 _<(no flgl nq oracle) < nq. (Scan-oracle flgl

nq oracle) is the remaining tail of oracle as of the cycle in question.

Of particular interest is the length of the waveform scan returns: it is just (no flgl nq oracle) +

n+ (len rest).

7.4 Finding the Sampling Point

Once recv has used scan to find the next edge (which is always nondeterministically defined), it uses

cdrn to wait the specified number of cycles. This nondeterministically defines the sampling point.

Formally, we need a iemma which distributes cdrn down a waveform.

A particularly nice rule is

Theorem.

(equal (cdrn dw (listn n flg))

33

(listn (difference n dw) flg)),

which says that waiting dw cycles on a flat wave of length n produces a flat wave of length n-dw. Here

difference is the "nonnegative difference" function that returns 0 if the subtrahend is larger than the

minuend.

To distribute cdrn over an app we use the equally elegant

Theorem.

(equal (cdrn n (app a b))

(if (lessp n (len a))

(app (cdrn n a) b)

(cdrn (difference n (len a)) b))) .

Thus, waiting n cycles on a wave composed of two parts, a and b is the same thing as waiting on a and

then concatenating b or waiting for fewer cycles on b alone, depending on whether a is sufficiently long to

survive the waiting.

This completes our strategic development.

7.5 The Proof of BPM18

Theorem. BPM 18

(implies

(and (bvp msg)

(numberp ts)

(numberp tr)

(not (zerop w))

(not (zerop r))

(not (lessp tr ts))

(lessp tr (plus ts w))

(rate-proximity w r)

(numberp pl))

(equal (recv (len msg) t I0

(async (send msg pl 5 13 p2)

ts tr w r oracle))

msg))

Proof. We transform the left-hand side of the conclusion into a slightly different form and then appeal to a

iemma (proved afterwards by induction). First, observe that the theorem is trivial if msg is empty: (len

msg) is 0 and hence recv retums nil, which is equal to msg. Thus, we may assume msg is a listp.

Now consider the left-hand side above

(recv (len msg) t i0

(a__sync (send msg pl 5 13 p2)

ts tr w r oracle)).

By expanding the definitions of send and async we get

(recv (len msg) t I0

[det

(warp

(smooth t

(app (listn pl t)

(app (cells

(listn

ts tr w r)

t 5 13 msg)

p2 t))))

34

oracle]) .

We now focus on the app underlined above. We know its argument is a listp whose car is f (because

cells is passed the flag t and a non-nil msg). So we can expand app to get

(recv (fen msg) t 10

(det

(warp

(smooth t

(app (listn pl t)

[cons f

(app (cdr (cells t 5 13 msg))

(listn p2 t))]))

ts tr w r)

oracle)) .

Now we distribute the smooth,

(recv (len msg) t i0

(det

(warp
[app (listn pl t)

(cons 'q

(smooth f

(app (cdr (cells t 5 13 msg))

(listn p2 t))))]

ts tr w r)

oracle)) .

Observe that the initial string of ts come through unscathed but the f turns into a ramp and the smooth,

with its flag negated, finally nestles against the final app.

Focusing now on the warp term above, we drive it through the app and past the ramp,

(recv (len msg) t I0

(det

lapp (listn (n* pl ts tr w r) t)

(app (listn (nq pl ts tr w r) 'q)

(warp (cdrn (dw pl ts tr w r)

(smooth f

(app (cdr (cells t 5 13 msg))

(listn p2 t))))

(ts pl ts tr w r)

(tr pl ts tr w r)

w r))]

oracle)) ,

and then distribute det down the waveform

(recv (fen msg) t 10

[app (listn (n* pl ts tr w r) t)

(app (det (listn (nq pl ts tr w r) 'q)

oracle)

(det (warp (cdrn (dw pl ts tr w r)

(smooth f

(app (cdr (cells t 5 13 msg))

(listn p2 t))))

(tS pl ts tr w r)

(tr pl ts tr w r)

w r)

35

(oracle* (listn (nq pl ts tr w r) 'q)

oracle)))]) .

Note that the first listn term above survives the det unscathed: no ramp, no nondeterminacy. But that

listn term is just a string of ts in the maw of a receiver scanning past t. So the above is equal to the

result of removing that listn,

(len msg) t 10

(app (det (listn

(det (warp

(recv

(nq pl ts tr w r) 'q) oracle)

(cdrn (dw pl ts tr w r)

(smooth f

(app (cdr (cells t 5 13 msg))

(listn p2 t))))

(ts pl ts tr w r)

(tr pl ts tr w r)

w r)

(oracle* (listn (nq pl ts tr w r) 'q)

oracle)))) .

Inspection will show that the recv expression above is an instance of the more general one in our key

BPM18-Lemma below. That lemma establishes that the recv returns msg. Q.E.D.

The form of our general lemma may be obtained by replacing certain terms above by variables. The t in

the second argument of recv and the f in the first argument of smooth are replaced by arbitrary Boolean

flags of opposite parity. The nq, dw, ts and tr terms are replaced by variables, constraining the nq

replacement to be between 1 and 3, the dw replacement to be 0 or 1, and the ts and tr replacements to be

clock-params. Finally, the oracle* expression is replaced by an arbitrary second oracle. The

general lemma is shown below.

Theorem. BPM18-Lemma

(implies (and (bvp msg)

(clock-params ts tr w r)

(rate-proximity w r)

(numbe rp nq)

(not (lessp

(numberp dw)

(not (lessp

(boolp flgl)

(boolp flg2)

(b-xor flgl

(equal (recv (len

flgl
10

(app

rag))

3 nq))

1 dw))

flg2))

msg)

(det (listn nq 'q) oraclel)

(det (warp

(cdrn dw

(smooth flg2

(app (cdr (cells flgl 5 13 msg))

(listn p2 t))))

ts tr w r)

oracle2)))

BPM18-Lemma describes the receiver in its general configuration rather than in its initial configuration.

Two points bear noting. First, the unusual initial pad is gone: the receiver is processing a warped sequence

of cells and is standing immediately in front of a blurred edge spread over nq cycles. Second, the receiver

36

is scanning for an arbitrary edge as specified by flgl rather than just a falling one as required in the

top-level application. This is particularly important because we will need to use our inductive hypothesis to

process cells of parity opposite that of the first cell. 8

The proof of BPMl8-Lemma is by induction on the length of msg. We give the proof below but make

some strategic remarks first. We separate two base cases, one for the empty msg and one for msgs of

length 1. Thus, in the induction case the message is of length 2 or more and we therefore know the first

cell is followed by another cell and, hence, by an edge. (The last cell is not necessarily followed by an

edge.) That trailing edge in the induction conclusion will become the leading edge in the induction

hypothesis.

There are two crucial points in the proof. (1) Does the receiver recover the bit in the first cell correctly?

And (2), when it scans past the remains of that first cell, is the receiver back in the general situation

described by our lemma, i.e., can we use our induction hypothesis? The answers to both questions hinge on

certain arithmetic inequalities that tell us that the receiver is in the sweet spot of the waveform 10 cycles

after detecting the leading edge. When we get around to answering these questions, we will consider the

two subcases: was the first bit of msg a t or an f? Because the sweet spot for a cell encoding t is

narrower than that for a cell encoding f, our discussion of the proof will be detailed only for the case of t.

See Figure 11.

t

/--/_---k /--

exl_ detection 10 cycles

o¢¢_s in this sampling

_gion _cuzs inthis

_ginn

f

--J 5[J

(Fi_.: not to _alc.)

Figure 11: Is the Correct Bit Recovered?

Proof of BPM 18-Lemma. The proof is by induction on the length of rang.

Base Case 0: If rang is not a listp, the proof is trivial because recv returns nil.

Base Case I:Suppose (listp msg) and (nlistp (cdr msg)). Thenmsg= (list b) forsome

Boolean b. The proof of this case requires the full analysis of how b is encoded, smoothed, warped,

determined, and recovered. This analysis will establish that we recover the correct bit and that the receiver

is properly positioned to scan past the remaining signals in the sweet spot. The same analysis is used (but

not described) in the induction step--our description of the induction case focus entirely on using the

induction hypothesis.

SWe do not have time to expound upon the subtleties of the BPMl8-Lemma formula, but finding a statement of this lemma suitable

for induction was the most creative part of the exercise.

37

We divide base case 1 into two subcases, according to whether b is t or f. We will describe only the case

where b is t.

Consider the left-hand side of the conclusion of BPMl8-Lemma, with msg replaced by (list t),

lhs :

(recv (len (list t)) flgl I0

(app (det (listn nq 'q) oraclel)

(det

(warp

(cdrn dw

(smooth flg2

(app (cdr (cells flgl 5 13 (list t)))

(listn p2 t))))

ts tr w r)

oracle2))) .

We wish to show that lhs is equal to (list t). By expanding the definitions of len, cells, cell and

csig, and using properties of app and listn, lhs is equal to

(recv 1 flgl 10

(app (det (listn nq 'q)

(det

(warp

(cdrn dw

(smooth flg2

[app

tS tr w r)

oracle2))) .

Dislributing smooth produces

(recv 1 flgl 10

(app (det (listn nq

(det

(warp

(cdrn dw

[app

oracle1)

(listn 4 (b-not flgl))

(app (listn 13 flgl)

(listn p2 t))]))

(listn (difference 4 dw) (b-not flgl))

(cons 'q

(app (listn 12 flgl)

(smooth flgl (listn p2 t))))]

ts tr w r)

oracle2))).

This allows us to distribute warp over the app and the ramp. The result is

(war_

[app

ts tr w r)

oracle2))).

Driving the cdrnintothe appandthenintoitsfirsta_umentproduces

(recv 1 flgl 10

(app (det (listn nq 'q) oraclel)

(det

(listn 4 (b-not flgl))

(cons 'q

(app (listn 12 flgl)

(smooth flgl (listn p2 t))))])

'q) oracle1)

38

(recv 1 flgl i0

(app (det (listn nq 'q) oraclel)

(det

[app (listn (n* (difference 4 dw) ts tr w r)

(b-not flgl))

(app (listn (nq (difference 4 dw) ts tr w r)

,q)

(warp

(cdrn (dw (difference 4 dw) ts tr w r)

(app (listn 12 flgl)

(smooth flgl (listn p2 t))))

(ts (difference 4 dw) ts tr w r)

(tr (difference 4 dw) ts tr w r)

w r))]

oracle2))) .

Once again we drive the cdrn into the app and listn, producing

(recv 1 flgl 10

(app (det (listn nq 'q) oraclel)

(det (app (listn (n* (difference 4 dw) ts tr w r)

(b-not flgl))

(app (listn (nq (difference 4 dw) ts tr w r)

,q)

(warp
lapp (listn (difference 12

(dw (difference 4 dw)

ts tr w r))

flgl)

(smooth flgl (listn p2 t))]

(ts (difference 4 dw) ts tr w r)

(tr (difference 4 dw) ts tr w r)

w r)))

oracle2))) ,

to which we can apply warp distributivity again to produce

(recv 1 flgl 10

(app (det (listn nq 'q) oraclel)

(det (app (listn (n* (difference 4 dw) ts tr w r)

(b-not flgl))

(app (listn (nq (difference 4 dw) ts tr w r)

,q)

[app

(listn (n* (difference 12

(dw (difference 4 dw)

ts tr w r))

(ts (difference 4 dw) ts tr w r)

(tr (difference 4 dw) ts tr w r)

w r)

flgl)

warp]))

oracle2))) ,

where warp is a complicated warp expression in which we are uninterested because it concerns the

warping of the waveform after the code subcell in question.

Finally, we distribute det over the apps and listns to get

39

(recv 1 flgl 10

(app (det (listn nq 'q) oraclel)

[app (listn (n* (difference 4 dw) ts tr w r)

(b-not flgl))

(app (det (listn (nq (difference 4 dw) ts tr w r)

'q)

oracle3)

(app (listn (n* (difference 12

(dw (difference 4 dw)

ts tr w r))

(ts (difference 4 dw) ts tr w r)

(tr (difference 4 dw) ts tr w r)

w r)

flgl)

(det warp oracle4)))])),

where oracle3 and oracle4 are oracle* expressions in which we are uninterested.

We find the printed form of this derivation extremely tedious. We remind the reader that during the

original construction of this proof, all of these manipulations were done by NQTHM. The user's job was to

state the lemmas.

Let us adopt the following abbreviations:

nql nq

sl (n* (difference 4 dw) ts tr w r)

nq2 (nq (difference 4 dw) ts tr w r)

s2 (n* (difference 12

(dw (difference 4 dw) ts tr w r))

(ts (difference 4 dw) ts tr w r)

(tr (difference 4 dw) ts tr w r)

w r)

rest

wave form

(det warp oracle4)

(app (det (listn nql 'q) oraclel)

(app (listn sl (b-not flgl))

(app (det (listn nq2 'q) oracle3)

(app (listn s2 flgl)

rest))))

_(b-not flgl)

flgl resl

I._--nql --_[_F--- sl -----_l_--nq2 --_[._--- s2 -----_1

Figure 12: Waveform if flgl is "High"

40

If we depict flgl as "high" and (b-not flgl) as "low", then waveform is as shown in Figure 12.

From our bounds discussion we can obtain upper and lower bounds on the lengths of each region of

waveform. The bounds are shown in Figure 13. It should be noted that the bounds are all independently

derived, i.e., it is not the case that all four quantities can simultaneously attain their extreme values, though

we do not use this unproved observation. We return to this point later.

Figure 13:

1 <_ nql <_ 3

l<_sl<_4

1 <- nq2 < 3

9<s2< 12

Bounds on the Lengths of Waveform Regions

We now resume our simplification of lhs, which, using our abbreviations, is just (recv 1 flgl 10

waveform). By expanding the definition of recv, recv-bit, and nth, we see that lhs is equal to

(list (b-xor (b-not flgl)

(car (cdrn i0 (scan flgl waveform)))))

The important subterm is (cdrn 10 (scan flgl waveform)). We claim that this term is equal to

(app (listn s2' flgl) rest), where s2' is nonzero. Suppose this claim is true. Then the car of

the cdrn isflgl and hence lhsis (list (b-xor (b-not flgl) flgl)) which is (list t)

and we are done.

Furthermore, looking ahead to the inductive case, this same cdrn/scan term is involved twice in the

recursive call of recv. It is the waveform from which all other bits of the message will be recovered and

its car is the signal recv will scan past while looking for the next edge. Proving that it is equal to (app

(listn s2' flgl) rest) will not only complete this base case but go a long way toward simplifying

the inductive case.

Therefore, consider (cdrn 10 (scan flgl waveform)) where waveform is

(app (det (listn nql 'q) oracle1)

(app (listn sl (b-not flgl))

(app (det (listn nq2 'q) oracle3)

(app (listn s2 flql)

rest))))

We want to prove that scanning waveform past flgl and then cdring 10 times moves us into the sweet

spot, which is underlined above.

But scan distributes over a series of ramps to produce

(cdrn I0

lapp (det (listn (no flgl nql oracle1) 'q)

(scan-oracle flgl nql oracle1))

(app (listn sl (b-not flgl))

41

(app (det (listn nq2 'q) oracle3)

(app (listn s2 flgl)

rest)))])

since we know sl is nonzero. Let (no flgl nql oracle1) be abbreviated by no. Observe that

O_:_no<nql<3. We can drive the cdrn past the first three apps to get: (app (listn s2' flgl)

rest) where s2' is the nonzero quantity no + sl + nq2 + s2-10, provided we can show that

no+sl +nq2 < 10 < no+sl +nq2+s2.

The two inequalities above are necessary and sufficient for the cdrn to go past the first three apps and to

stop without going past the fourth one. It remains therefore only to prove these two inequalities.

We do this by considering the known bounds on each term. See Figure 13. The terms no, sl and nq2 are

bounded above by 3, 4 and 3 respectively. The sum of the upper bounds is thus 3+4+3 = 10 and since 10 <

10 we have established the first of our two inequalities.

The lower bound on no is 0. The lower bounds on sl and nq2 are 1 and 1 respectively. The lower bound

on s2 is 9. The sum of the lower bounds is thus 0+I+1+9 = 11 and since 10 < 11, we have established the

second inequality.

This completes the proof of base case 1 when b is t. Since the sweet spot is even bigger when b is f, the

proof of that case is trivial and omitted.

Induction Case: We move on now to the induction case. The case is defined by the condition that

(listp msg) and (listp (cdr msg)) are both true. We inductively assume an instance of

BPM18-Lemma in which msg is replaced by (cdr msg) and certain substitutions are made for the

variables flgl, nq, oraclel, dw, flg2, ts, tr, and oracle2. We will derive the instance and

exhibit it during the course of the proof. The induction conclusion is, of course, BPM18-Lemma itself.

Consider, again, the left-hand side, lhs,

(recv (len msg) flgl 10

(app (det (listn nq 'q)

(de__tt

(warp
(cdrn dw

(smooth flg2

(app

oracle1)

(cdr (cells flgl 5 13 msg))

(listn p2 t))))

(listn nq 'q) oraclel)
(det

(warp

(smooth flg2

(cell flgl
(difference 4 dw)
13

(car msg)))

ts tr w r)

wave form:

(app (det

lapp

ts tr w r)

oracle2))) .

Sincerang isnon-nil, the f_stargument, (len msg), isequalto (addl (len (cdr msg))). In

addition, using the same series of distributivity laws used in base case 1, we can simplify the other

underlined terms above so as to reduce the last argument to the following, which we abbreviate as

42

where

rest:

(app

oracle2)

rest]))),

(det (listn

oracle3)

(det

(warp

(cdrn

(ts

(tr

w r)

(nq (difference 17 dw) ts tr w r)

'q)

(dw (difference 17 dw) ts tr w r)

(smooth (b-not (csig flgl (car msg)))

(app (cdr (cells (csig flgl (car msg))

5 13

(cdr msg)))

(listn p2 t))))

(difference 17 dw) ts tr w r)

(difference 17 dw) ts tr w r)

oracle4))

and oracle3 and oracle4 are oracle* expressions whose values are unimportant.

At this point, lhs is equal to (recv (addl (fen (cdr msg))) flgl i0 waveform). By

opening racy we reduce lhs to

[cons (recvbit I0 (scan flgl waveform))

(recv (len (cdr msg))

(car (cdrn i0 (scan flgl waveform)))

10

(cdrn i0 (scan flgl waveform)))] .

Following the analysis we did in base case 1, we know that the recv-bit expression is equal to (car

msg). Similarly, we reduce the cdrn/scan expression to (app (listn s2' (csig flgl (car

msg))) rest).

Thus, lhs is

(cons [car msg]

(recv (len (cdr msg))

(car [app (listn s2' (csig flgl (car msg))) rest])

10

[app (listn s2' (csig flgl (car msg))) rest])) .

But since s2' is nonzero, the car expression above is just (csig flgl (car msg)). Using the fact

that recv scans past leading occurrences of this signal in the app we get that lhs is

(cons (car msg)

(recv (len (cdr msg))

[csig flgl (car msg)]

10

rest)) .

We choose for our induction hypothesis that instance of BPM18-Lemma that establishes that the recv

term above is equal to (cdr msg). Suppose we can do that and relieve the hypotheses of the induction

hypothesis. Then lhs is (cons (car mag) (cdr msg)) which is msg and we are done.

43

It remainsonly to demonstrate that the recv term above is in fact an instance of the left-hand side of the

conclusion of BPM18-Lemma (and to show that the instantiation chosen satisfies the hypotheses of

BPM18-Lemma). Replacing the abbreviation rest by its meaning we see that the recv term is

(recv (len (cdr msg))

(csig flgl (car msg))

10

(app (det (listn

oracle3)

(det

(warp

(cdrn (dw

(ts

(tr

w r)

(nq (difference 17 dw) ts tr w r)

,q)

(difference 17 dw) ts tr w r)

(smooth (b-not (csig flgl (car msg)))

(app (cdr (cells (csig flgl (car msg))
5 13

(cdr msg)))

(listn p2 t))))

(difference 17 dw) ts tr w r)

(difference 17 dw) ts tr w r)

oracle4))) .

To obtain this term from the left-hand side of the conclusion of BPM18-Lemma, the following

replacements suffice.

msg (edr msg)

flgl (csig flgl (car msg))

nq (nq (difference 17 dw) ts tr w r)

oraclel oracle3

dw (dw (difference 17 dw) ts tr w r)

flg2 (b-not (csig flgl (car msg)))

ts (ts (difference 17 dw) ts tr w r)

tr (tr (difference 17 dw) ts tr w r)

oracle2 oracle4

Inspection will also show that these instantiations satisfy the hypotheses of BPM18-Lemma, i.e., the new

value ofmsg is a bit vector, the new value of nq is no greater than 3, the new value ofdw is 0 or 1, the new

values of ts and tr are clock-params with w and r, and the new flags are Boolean and opposite.

Thus, the induction hypothesis establishes that the recv term above is indeed equal to (cdr msg).

Q.E.D.

The proof described here is essentially that checked by NQTHM. The complete transcript of the session in

which NQTHM is led from its GROUND-ZERO theory to BPM18 is available on request from the author.

The transcript contains 53 definitions and 208 theorems stated by the user so as to lead NQTHM to the

proof. Roughly half of those theorems are elementary properties of natural number arithmetic and list

processing functions such as app and len. The careful reader of the transcript will note that the

mechanically checked proof differs tactically from the one described here primarily in elevating the case

splits on the message bit; in our description of the proof we delayed those splits to conserve effort, while

NQTHM tends to split early to simplify cases locally at the expense of duplicating work later. The total

time required by NQTHM to process all of the definitions and theorems is about one hour on a Sun

Microsystems 3/60.

44

8. Other Configurations of Biphase Mark

Most of the proof above concerned straightforward applications of our theory of async to the biphase

mark output. The crucial step was the derivation of the inequalities

no+sl+nq2 < 10 < no+sl+nq2+s2

in base case 1. It should be clear that the numbers 5, 13, and 10 for the subeell sizes and sampling distance

were chosen precisely to satisfy these two inequalities while reducing the cell size and the sampling

distance. If we implemented send and recv with microprocessors nominally clocked at 20MHz each,

then at 18 cycles per bit, the protocol would permit messages to be communicated at the burst rate of 1.1M

bps. But note that we achieved 18 cycles per bit by an asymmetric division of the bit cell; our mark subcell

is only 5 cycles long and hence our protocol demands a higher frequency response from the wire than is

evident from the fact that our cell size is 18. By reducing the sampling distance we increase the protocol's

tolerance for clock rate disparity.

An analogous proof can be constructed for other values of these parameters, provided the basic inequalities

hold. In particular, if cell size 32 is chosen, with mark and code subcells of equal length and sampling
31 w 33

distance 23, and we modify rate-proximity to give us _ < r -< 5, the analogous inequalities are

3+15+3 < 23 < 0+12+1+12. Because these inequalities hold, we see that the 32-cycle symmetric bil_hase
|

mark protocol always recovers the bit correctly, provided the ratio of the clock rates are within _ (or

3.125%) of unity. From this remark it should be clear that we could undertake the proof of a more general

theorem in which variables replace the particular subcell sizes and sampling distance and the clocks are

constrained in relation to those variables. We have not undertaken the proof of that more general theorem

because our main interest here was demonstrating that one particular version of the protocol works.

An interesting configuration to consider is cell size 16, split symmetrically into mark and code subcells,

with sampling distance 11. The aualogous inequalities are 3+7+3 < 12 < 0+4+1+4, which are invalid. That

is, the proof breaks down for the 16-cycle symmetric biphase mark protocol. This is not to say that the

16-cycle version does not work! Such a configuration is used in the Intel 82530 Serial Communications

Controller [17] (where it presumably works) and we have found no example of reasonably close clock rates

for which it fails in our model. But we cannot prove that it works using the attack shown here. Our attack

bounds a sum by summing the bounds, which gives sound but crude results. The 16-cycle version, if

indeed it works under our model, will require a more careful analysis of the bounds. It is also possible that

the 16-cycle version is not correct under our model but that it works in practice. If this is the case, it it just
illustrates the conservative nature of our model.

While the theorem establishes that the 18-cycle protocol works provided the clocks are within about 5%,

experiments with the formal model suggest that the clock rate restriction can be considerably relaxed. We

conjecture the 18-cycle protocol works for clock rate ratios that vary almost 30% from unity. Experiments

show that the first place that the protocol fails to recover the first bit as the receiver's clock slows down in

steps of 1 from the writer's clock of 100 is when the receiver's clock is 143. In particular,

(recv 4 t i0

(async (send (list t f t t) 10 5 13 10)
0 84 100 143

(list t t f f)))

is (list f t t t).

Thus, we believe the theorem we have proved about the 18-cycle protocol is very weak compared to what

is true in the model. The culprit is our casual treatment of the bounds.

45

Ourprimaryinterestin thispaperis notestablishingtheperformanceboundsof biphasemark.It is in
explicatingourmodel,demonstratingthatit canbeusedtoderiveperformancebound,andappealingtothe
engineeringcommunitytocriticizeitsaccuracy.Onlyafterthemodelhassurvivedtheinitialscrutinyof
theengineeringcommunitydowefeelit worthwhiletouseit inadetailedformalstudyofcommunications.

9. Concluding Remarks on our Model

We have formalized a model of asynchrony that permits quantitative formal analysis of performance. We

have taken a step toward developing a body of theorems about the model to permit its economical

application to diverse problems.

We used the model to show that two different versions of the biphase mark procotol "work." In the first

protocol we send each bit in a cell lasting 18 cycles, the first 5 of which constitute the marking edge of the

ceil. We prove that the protocol permits the correct transmission of messages of arbitrary length provided
1

the ratio of the clock rates of the two processors is within about 5% (T_) of unity. The 18-cycle protocol

gives a burst bit rate of about 1.1M bps if the processors have 20MHz clocks--though pin limitations on

the actual implementation of the communication modules would require quantizing long messages and

would degrade sustained performance. Furthermore, our 18-cycle protocol demands higher frequency

response of the wire than is evident because the mark subcell is only 5 cycles long. We offer the 18-cycle

protocol primarily as a catalyst for thought: The model says it will work. Will it?

We also used the model to show that the conventional 32-cycle biphase mark protocol allows correct

transmission provided the clock rate ratio is within 3.125% of unity.

All of the proofs described here were checked with NQTHM. Inevitably, the reader of this paper will

wonder if there are mistakes in our presentation of the proof. Indeed, so does the author. Does each

formula follow from the previous one? While these doubts inevitably arise in the context of a proof

presented on paper, they do not arise during the machine-assisted act of creating the proof in the first place.

Furthermore, the user of NQTHM is concerned primarily with inventing the lemmas that enable the rewrite

steps and not with the construction or even the derivation of the terms that thereby arise. One of the main

advantages to having a formal model in a mechanized logic is that it is possible to have machine assistance

while exploring the ramifications of various decisions.

Returning to our model per se, it is presented as a recursively defined function on waveforms. To use it to

investigate the communication from one processor to another it is (only) necessary to formalize the

input/output behavior of the two processors. The implementation details of each processor are not relevant.

Furthermore, each processor may be specified independently of the other.

Because of this decomposition, it is possible to verify an implementation of each processor independently

of the other and of the model of asynchrony. Consider sexad. It is the formal specification of the kernel of

the send side of a microprocessor's communications module. Indeed, its definition was developed with that

use in mind. See [25]. Using the Formal HDL described in [7], it is possible to design a circuit that

implements send. The formal semantics of the HDL is cast as an NQTHM interpreter (or simulator) that

determines the signals on all the pins and the state produced by a described design, given the initial signals

and state. Thus one can easily define the sequence of signals produced by a circuit. Suppose we had a

circuit alleged to implement send. That means the sequence of signals on a given pin over some number

of cycles starting from a given initial state is equal to the sequence of signals produced by sen& Proving

such a correctness result would be straightforward (given the reusable theory developed for the Formal

HDL by Brock and Hunt) for some hardware designs. See [25] for an example of the use of the Formal

46

HDLinthespecificationanddesignofasimpleverifiedmicroprocessor.

In anexactlyanalogousfashion,onecoulddesignadigitalphaselockedloopallegedtoimplementrecv
and prove that it was correct.

Our point about decomposition is that the proofs of correctness of these two hardware modules are

independent, both of eachother and of our model of asynchrony. The Formal HDL provides the ability to

verify synchronous designs (designs in which there is only one clock) and that is all we need to design and

verify implementations of send and reev. Given two verified processors one can then establish that they

communicate properly by applying our model and reasoning about their specifications rather than their

implementations. That is what we have done in this paper: we proved that send and recv --the

specifications of two independently clocked synchronous processors-- provide reliable communication.

A limitation of our model is that it only addresses one-way communication. There is no way to use it to

verify two-way communication if timing or ordering on the signals is relevant (as it is in true two-way

communication). This is a general problem that has nothing to do with asynchrony but rather with message

passing formalized at the level of independently specified input/output streams. Perhaps the general

problem can be solved in a way that delays consideration of the effects of asynchrony and transforms the

dialog into two monologues (having certain oracular properties that permit their interpretation as a dialog)

that can then be investigated by the techniques developed here. In any case, we see this as a fruitful area of

further research.

Another limitation of our model is that we have assumed that clocks are linear functions of time. We do

not know how inaccurate this assumption is. A more general model is that clocks are nearly linear in the

sense that every cycle is within some epsiion of the nominal length. This could be formalized in the style

given here. There is no doubt that it would complicate the reusable theory of asyne. Determining the

lengths of the various regions of the warped signal would be more tedious. We speculate that the

accumulating clock error would tend to be washed out by our conservative lyeatment of edges and would

not be fatal to the proof of the biphase mark protocol.

Finally, our model ignores various engineering realities such as metastability, reflections, noise, and

distortion. It was our intention to ignore these on the grounds that we wanted to address the problems of

asynchrony rather than of signal processing. This attempt to separate concerns may be misguided: some

protocols are designed to overcome noise, say, and the entire raison d'etre of such designs is lost in our

analysis.

In the end we must come back to our introductory remarks on engineering. We have formalized a model of

asynchrony. With the model it is possible to prove that certain protocols work. It is up to the engineer to

decide whether the model is accurate enough for the purposes at hand.

10. Relation to Other Work

This work began as part of a NASA-sponsored investigation at Computational Logic, Inc. (CLI) into the

formalization of fault tolerance. W. Bevier and W. Young of CLI formalized with NQTHM the Oral

Messages (or "Byzantine Agreement") algorithm of Pease, Shostak, and Lamport [26]. In [4] they

describe the formalization and correctness proof of that algorithm and carried it all the way down to the

NQTHM specification of four microprocessors that use the algorithm to reach agreement in the presence of

faults. Young then used NQTHM to prove the correctness of the interactive convergence clock

synchronization algorithm, essentially following in the footsteps of Rushby and yon Henke [29].

Meanwhile, the present author used the hardware description language formalized in NQTHM by B. Brock

47

and W. Hunt [7] of CLI to implement the processor specified by Bevier and Young and to prove that the

described design meets their specification [25]. The clear but unstated direction of the CLI work on

fault-tolerance was to enable the eventual fabrication of a device implementing the Byzantine agreement

algorithm--a device whose design had been mechanically verified from the journal article describing the

algorithm all the way down to the netlisL (See [3] for a description of the similarly verified "CLI short

stack" that goes from a verified compiler for a simple high-level language, through a verified assembler

and linker, to a microprocessor verfied at the gate level.) However, a major stumbling block in this

program was the fact that the four microprocessors specified by Bevier and Young were unrealistically

assumed to execute in lockstep synchrony, i.e., to share a common clock. This is unacceptable since it

introduces a potential single-point failure into the system. This assumption was made primarily to enable

the convenient exchange of data between the four processors during the voting that leads to agreement. It

was therefore natural to study the question of verified communication between asynchronous processors. It

should be noted that even with all the present pieces in place, the goal of a verified network of asychronous

Byzantine processors is still a significant challenge.

Our model of asynchronous communication is expressed as a function that transforms the signal stream

produced by one processor into the signal stream consumed by an asynchronous processor. To apply the

model, one must characterize the signals produced and consumed by the two communicating processes.

This input/output model of concurrent processes is a familiar one used in Milner's CCS [23] and Hoare's

CSP [15]. Unlike that work, we consider only the simple case of one way communication. However, our

focus is entirely on the physical problems introduced by asynchrony, namely how clock rates, delay, and

phase shift affect the received signal. The quantitative modeling of time makes our work very different in

character and focus from the cited work. The reader interested in the general problems of verifying

distributed and/or concurrent systems should see, in addition to [23] and [15], the seminal work by Manna

and Pnueli [21], Barringer's survey [2], and the Unity model by Chandy and Misra [9]. In [14],

D. Goldschlag describes an NQTHM-based mechanized proof system Unity.

Our work finds its closest relatives in the very active field of hardware verification. See [33] for a tutorial

introduction to and overview of the field. In common with our work, many formal models of

microprocessors, e.g., [16], [32], and [20], quantitatively measure time in cycles. A particularly intriguing

rifle, given the title of this work, is J. Joyce's "Formal Specification and Verification of Asynchronous

Processes in Higher-Order Logic" [19]. The report deals with the same problem confronted in [16],

namely how to formalize the interaction between a synchronous microprocessor and an asynchronous

memory via a four-phase handshaking protocol. The report offers an attractive alternative to the

formalization presented in [16]. But it does not address general asynchronous communication in the sense
that we do.

Because we verify a protocol in this paper, it is necessary to comment upon the relation of our work to the

very old and very active research area of protocol verification. An important survey of the field was

published as long ago as 1979 [31] and the field has an annual conference (Protocol Testing, Specification,

and Verification) with proceedings published by North-Holland [1].

The International Standards Organization has defined seven levels of protocol. Level 1, the "physical

level," deals with pin connections, voltage levels, and physical signal formats. Level 2, the "data link

level," concerns itself with data formats, synchronization, error control, and flow control. Above those are,

successively, the "network level," the "transport level," the "session level," the "presentation level"

and the "application level."

Perhaps the most easily distinguished feature of our work is that it is essentially at level 1 while, to the best

of our knowledge, all other formal verification work on protocols addresses higher levels.

48

The best studied protocol is probably the alternating bit protocol, which is at level 2. Of special concern in

that protocol is detection of message loss to an unreliable lower level. The protocol provides for

acknowledgement of reception (which may itself get lost) and retransmission (which may lead to duplicate

receptions). In the late 70s mechanical protocol verification was based on the then-standard program

verification technology: a procedural encoding of the protocol was annotated with inductive assertions,

from which verification conditions were mechanically generated and then interactively proved. In [12] this

method is applied to the alternating bit protocol. See [13] for examples of method applied to still-higher

transport level protocols. But in the 80s the combination of finite-state machine models, propositional

temporal logic, and fast mechanical decision procedures came to dominate mechanized protocol

verification because of the speed and automation this combination offered. For a description how this

approach is applied to the alternating bit protocol see [10] by E. Clarke, E. Emerson and A. Sistla. Clarke

and O. Grumberg have written an excellent review of the use of finite state machines and temporal logic in

automatic verification of concurrent systems [11].

However, the finite state machine approach and the related Petri net approach [27] suffer from the inability

to discuss time quantitatively. Much research in the protocol verification community is now aimed at

adding some notion of time to the finite state approach, without exacerbating the already vexing state

explosion problem or taking the entire problem out of the propositional domain. This is in stark contrast to

our work, where explicit, quantitatively measured time forms the foundation of the model.

Finally, while not at level 1 and not supported by mechanically checked proofs, the closest work on

protocol verification is perhaps that by P. Jain and S. Lam [18] where time is modeled quantitatively and

discretely and signal propagation down a bus is also modeled (assuming constant propagation speed). They

specify a modified Expressnet protocol which they prove to be collison-free and they derive bounds for its

access delay.

11. Acknowledgements

I would like to thank my colleagues at Computational Logic, Inc., for helping me with this project,

especially Bill Young and Bill Bevier for bringing the formalization of asynchrony to my attention, Warren

Hunt for explaining microprocessors and biphase mark, Bishop Brock for explaining metastability and his

and Warren's formal HDL to me, Larry Smith for explaining how Bill and Bill's Byzantine processor

specification actually told him how to build it, and Matt Wiiding for helping find algebraic expressions for

certain of the functions in the model. None of these people should be held responsible for my

misconceptions regarding hardware and communications.

49

References

1. S. Aggarwal and K. Sabnani (eds.). Protocol Specification, Testing, and Verification VIII. Elsevier
Science Publishers B.V. (North-Holland), 1988.

2. H. Barringer. A Survey of Verification Techniques for Parallel Programs. Springer-Verlag Lecture
Notes in Computer Science 191, Berlin, 1985.

3. W.R. Bevier and W.A. Hunt and J S. Moore and W.D. Young. "Special Issue on System Verification".
Journal of Automated Reasoning 5, 4 (1989), 409-530.

4. W.R. Bevier and W.D. Young. The Proof of Correctness of a Fault-Tolerant Circuit Design.

Proceedings of the Second International Working Conference on Dependable Computing for Critical
Applications, February, 1991, pp. 107-114.

5. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

6. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, New York, 1988.

7. B.C. Brock and W.A. Hunt. A Formal Introduction to a Simple HDL. In Formal Methods for VLSI
Design, J. Staunstrup, Ed., Elsevier Science Publishers B.V. (North-Holland), 1990, pp. 285-329.

8. J. Campbell. C Programmer's Guide to Serial Communications. Howard W. Sams and Co., 4300 West

62 Street, Indianapolis, IN 46268, 1988.

9. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison Wesley, Massachusetts,
1988.

10. E.M. Clarke and E.A. Emerson and A.P. Sistla. "Automatic Verification of Finite-State Concurrent

Systems using Temporal Logic Specifications". ACM Transactions on Programming Languages and

Systems 8, 2 (1986), 244-263.

11. E.M. Clarke and O. Grumberg. "Research on Automatic Verification of Finite-State Concurrent
Systems". Ann. Rev. Comput. Sci. 2 (1987), 269-290.

12. B.L. DiVito. A Mechanical Verification of the Alternating Bit Protocol. Tech. Rept. ICSCA-CMP-21,
Institute for Computing Science, The University of Texas at Austin, 1981.

13. B.L. Di Vito. Verification of Communications Protcols and Abstract Process Models. PhD Thesis

ICSCA-CMP-25, Institute for Computing Science and Computer Applications, University of Texas at
Austin, 1982. Also available through Computational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin,
TX 78703..

14. D.M. Goidschlag. Mechanizing Unity. In Programming Concepts and Methods, M. Broy and
C. B. Jones, Eds., North Holland, Amsterdam, 1990.

15. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, Englewood Cliffs,
NJ, 1985.

16. W.A. Hunt. FM8501: A Verified Microprocessor. University of Texas at Austin, December, 1985.
Also available through Computational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703..

17. Intel Corporation. Microcommunications. Intel Literature Sales, P.O. Box 7641, Mt. Prospect, IL
60056-7641, 1991.

18. P. Jain and S.S. Lam. "Specification Real-Time Protocols for Broadcast Networks". IEEE
Transactions on Computers 40, 4 (1991), 404-422.

19. J.J. Joyce. Formal Specification and Verification of Asynchronous Processes in Higher-Order Logic.

Tech. Rept. Technical Report No. 136, University of Cambridge Computer Laboratory, June, 1988.

20. J.J. Joyce. Multi-Level Verification of Microprocessor-Based Systems. Tech. Rept. Technical Report
No. 195, University of Cambridge Computer Laboratory, May, 1990.

50

21.Z.MannaandA.Pnueli."AdequateProofPrinciplesforInvarianceandLivenessPropertiesof
ConcurrentPrograms".Science of Computer Programming 4 (1984), 257-289.

22. C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley Publishing Co., 1980.

23. R. Milner. A Calculus of Communicating Systems. Springler-Verlag, Berlin, 1980.

24. F.C. Mish (Ed.) Webster's Ninth New Collegiate Dictionary. Merriam-Webster, Inc, 1987.

25. J S. Moore. Mechanically Verified Hardware Implementing an 8-Bit Parallel IO Byzantine Agreement
Processor. Tech. Rept. NASA CR-189588, 1992.

26. M. Pease and R. Shostak and L. Lamport. "Reaching Agreement in the Presence of Faults". Journal of
the ACM 27, 2 (1980), 228-234.

27. J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

28. M. S. Roden. Digital Communication Systems Design. Prentice Hall, 1988.

29. J. Rushby and F. von Henke. Formal Verification of the Interactive Convergence Clock
Synchronization Algorithm using EHDM. Tech. Rept. SRI CSL 89-3R, Computer Science Laboratory,
SRI International, Menlo Park, CA 94025, January, 1989.

30. B. Sklar. Digital Communications Fundamentals and Applications. Prentice Hall, 1988.

31. C. Sunshine. "Formal Techniques for Protocol Specification and Verification". Computer 12, 9
(1979), 20-27.

32. C.H. Pygott. Formal Proof of Correspondence Between the Specification of a Hardware Module and
its Gate Level Implementation. Report 85002, Royal Signals and Radar Establishment, Malvern,
Worcestershire (United Kingdom), November, 1985.

33. M. Yoeli. Formal Verification of Hardware Design. IEEE Computer Society Press, Los Alamitos,
California, 1990.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No 0704-0188

PuDllcreportln 9 Durden for thpscollection of information psestimated to average _ hour oer resDo_se, including the time for revtewlng instructions, $earch=n9 ex#stCngdata sources.
gathering and maintaining the clara needed, and (omDlettng anci revJewlncj the collection of information¸ Send comments rec_arclingthis burden estln_ate or any other asDectot this
coliectron of inlormatlon, tnclucl_ng suggestions _or reducing th_s bur0en to Washington HeadQuarters Services, Directorate Tor Information ODeratlO_S an¢l ReDor%, 1215 Jefferson
DavisH_ghway,Suite 1204, Arhngton, VA 22202-4302. and to the Office Of Management and Budget. PaDerwork Reductloo PrOleCt(0704-0188), Washington, DC 2050]k

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1992 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Formal Model of Asynchronous Communication and Its C NASI-18878

Use in Mechanically Verifying a Biphase Mark Protocol WU 505-64-10-05

6. AUTHOR(S)

J.Strother Moore

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)

Computational Logic, Inc.

1717 West Sixth Street, Suite 290
Austin, TX 78703

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23665-5225

8. PERFORMING ORGANIZATION

REPORT NUMBER

_-68

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-4433

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Ricky W. Butler
Task 3 Report

12a. DISTRIBUTION/AVAiLABILITYSTATEMENT

Unclassified-Unlim.tted

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this paper we present a formal model of asynchronous communication as a function

in the Boyer-Moore logic. _]le function transfocms the signal stream generated by

one processor into the signal streamc_ by an independently clocked processor.
33his transformation "blurs" edges and "dilates" time due to differences in the phases

and rates of the two clocks and the communications delay. Be model can be used
quantitatively to derive concrete performance bounds on asynchronous communications

at ISO protocol level I (physical level). We develop part of the reusable formal

theory that permits the convenient application of the model. We use the theory to

show that a biphase mark protocol can be used to send messages of arbitrary length
between two asvnchronous processors. We study two versions of the protocol, a
c0nventional one which uses cells of size 32 cycles and an unconventional one which

uses cells of size 18. We conjecture that the protocol can he proved to work under

our model for smaller cell sizes and more divergent clock rates but the proofs
would be harder.

14. SUBJECT TERMS

Hardware verification, fault tolerance, protocol verification,

clock synchronization, Manchester format, FM format, Boyer-Moore
Logic, automatic theorem DrOVing. r_rfnrn_nr_ mnclol_no_
17. SECURITY CLASSIFICATION 18. SECURITY-CLASSIFICATION 19. SECURIT_CLASSIFICATION

OF REPORT OFTHISPAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500

15. =NUMBER OF PAGES

54
16. PRICE CODE

A04
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by AN¢_IStd Z39-18
298-102

N ASA-L_.ngley, 1992

